語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Portfolio Optimization with Stochast...
~
Varga, Katherine Yvonne.
FindBook
Google Book
Amazon
博客來
Portfolio Optimization with Stochastic Dividends and Stochastic Volatility.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Portfolio Optimization with Stochastic Dividends and Stochastic Volatility./
作者:
Varga, Katherine Yvonne.
面頁冊數:
119 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: A.
Contained By:
Dissertation Abstracts International77-10A(E).
標題:
Mathematics education. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10113008
ISBN:
9781339761282
Portfolio Optimization with Stochastic Dividends and Stochastic Volatility.
Varga, Katherine Yvonne.
Portfolio Optimization with Stochastic Dividends and Stochastic Volatility.
- 119 p.
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: A.
Thesis (Ph.D.)--North Carolina State University, 2015.
We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman equation, which we proceed to prove existence of a classical solution. Our value function is chosen to maximize the expected total discounted HARA utility of consumption. In the Verification Theorem, we prove that the solution to the HJB equation is equal to the value function.
ISBN: 9781339761282Subjects--Topical Terms:
641129
Mathematics education.
Portfolio Optimization with Stochastic Dividends and Stochastic Volatility.
LDR
:01503nmm a2200277 4500
001
2075362
005
20161024151516.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781339761282
035
$a
(MiAaPQ)AAI10113008
035
$a
AAI10113008
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Varga, Katherine Yvonne.
$3
3190746
245
1 0
$a
Portfolio Optimization with Stochastic Dividends and Stochastic Volatility.
300
$a
119 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: A.
500
$a
Adviser: Tao Pang.
502
$a
Thesis (Ph.D.)--North Carolina State University, 2015.
520
$a
We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman equation, which we proceed to prove existence of a classical solution. Our value function is chosen to maximize the expected total discounted HARA utility of consumption. In the Verification Theorem, we prove that the solution to the HJB equation is equal to the value function.
590
$a
School code: 0155.
650
4
$a
Mathematics education.
$3
641129
650
4
$a
Finance.
$3
542899
690
$a
0280
690
$a
0508
710
2
$a
North Carolina State University.
$3
1018772
773
0
$t
Dissertation Abstracts International
$g
77-10A(E).
790
$a
0155
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10113008
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9308230
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入