語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Modeling Purposeful Adaptive Behavio...
~
Ziebart, Brian D.
FindBook
Google Book
Amazon
博客來
Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy./
作者:
Ziebart, Brian D.
面頁冊數:
216 p.
附註:
Source: Dissertation Abstracts International, Volume: 72-02, Section: B, page: 0990.
Contained By:
Dissertation Abstracts International72-02B.
標題:
Engineering, Robotics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3438449
ISBN:
9781124414218
Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy.
Ziebart, Brian D.
Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy.
- 216 p.
Source: Dissertation Abstracts International, Volume: 72-02, Section: B, page: 0990.
Thesis (Ph.D.)--Carnegie Mellon University, 2010.
Predicting human behavior from a small amount of training examples is a challenging machine learning problem. In this thesis, we introduce the principle of maximum causal entropy, a general technique for applying information theory to decision-theoretic, game-theoretic, and control settings where relevant information is sequentially revealed over time. This approach guarantees decision-theoretic performance by matching purposeful measures of behavior (Abbeel & Ng, 2004), and/or enforces game-theoretic rationality constraints (Aumann, 1974), while otherwise being as uncertain as possible, which minimizes worst-case predictive log-loss (Grunwald & Dawid, 2003).
ISBN: 9781124414218Subjects--Topical Terms:
1018454
Engineering, Robotics.
Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy.
LDR
:02286nam 2200301 4500
001
1401624
005
20111017084410.5
008
130515s2010 ||||||||||||||||| ||eng d
020
$a
9781124414218
035
$a
(UMI)AAI3438449
035
$a
AAI3438449
040
$a
UMI
$c
UMI
100
1
$a
Ziebart, Brian D.
$3
1680770
245
1 0
$a
Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy.
300
$a
216 p.
500
$a
Source: Dissertation Abstracts International, Volume: 72-02, Section: B, page: 0990.
500
$a
Adviser: J. Andrew Bagnell.
502
$a
Thesis (Ph.D.)--Carnegie Mellon University, 2010.
520
$a
Predicting human behavior from a small amount of training examples is a challenging machine learning problem. In this thesis, we introduce the principle of maximum causal entropy, a general technique for applying information theory to decision-theoretic, game-theoretic, and control settings where relevant information is sequentially revealed over time. This approach guarantees decision-theoretic performance by matching purposeful measures of behavior (Abbeel & Ng, 2004), and/or enforces game-theoretic rationality constraints (Aumann, 1974), while otherwise being as uncertain as possible, which minimizes worst-case predictive log-loss (Grunwald & Dawid, 2003).
520
$a
We derive probabilistic models for decision, control, and multi-player game settings using this approach. We then develop corresponding algorithms for efficient inference that include relaxations of the Bellman equation (Bellman, 1957), and simple learning algorithms based on convex optimization. We apply the models and algorithms to a number of behavior prediction tasks. Specifically, we present empirical evaluations of the approach in the domains of vehicle route preference modeling using over 100,000 miles of collected taxi driving data, pedestrian motion modeling from weeks of indoor movement data, and robust prediction of game play in stochastic multi-player games.
590
$a
School code: 0041.
650
4
$a
Engineering, Robotics.
$3
1018454
650
4
$a
Artificial Intelligence.
$3
769149
650
4
$a
Computer Science.
$3
626642
690
$a
0771
690
$a
0800
690
$a
0984
710
2
$a
Carnegie Mellon University.
$3
1018096
773
0
$t
Dissertation Abstracts International
$g
72-02B.
790
1 0
$a
Bagnell, J. Andrew,
$e
advisor
790
$a
0041
791
$a
Ph.D.
792
$a
2010
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3438449
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9164763
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入