語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Range data analysis by free-space mo...
~
King, Bradford James.
FindBook
Google Book
Amazon
博客來
Range data analysis by free-space modeling and tensor voting .
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Range data analysis by free-space modeling and tensor voting ./
作者:
King, Bradford James.
面頁冊數:
179 p.
附註:
Source: Dissertation Abstracts International, Volume: 70-05, Section: B, page: 2999.
Contained By:
Dissertation Abstracts International70-05B.
標題:
Engineering, Robotics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3357225
ISBN:
9781109141863
Range data analysis by free-space modeling and tensor voting .
King, Bradford James.
Range data analysis by free-space modeling and tensor voting .
- 179 p.
Source: Dissertation Abstracts International, Volume: 70-05, Section: B, page: 2999.
Thesis (Ph.D.)--Rensselaer Polytechnic Institute, 2008.
This thesis presents two range data analysis methods to address challenges of modeling three-dimensional, outdoor, uncontrolled environments. We focus on scenes observed by ground-based, single-viewpoint laser-range scanners.
ISBN: 9781109141863Subjects--Topical Terms:
1018454
Engineering, Robotics.
Range data analysis by free-space modeling and tensor voting .
LDR
:02895nam 2200313 4500
001
1397817
005
20110815085309.5
008
130515s2008 ||||||||||||||||| ||eng d
020
$a
9781109141863
035
$a
(UMI)AAI3357225
035
$a
AAI3357225
040
$a
UMI
$c
UMI
100
1
$a
King, Bradford James.
$3
1676671
245
1 0
$a
Range data analysis by free-space modeling and tensor voting .
300
$a
179 p.
500
$a
Source: Dissertation Abstracts International, Volume: 70-05, Section: B, page: 2999.
500
$a
Adviser: Charles V. Stewart.
502
$a
Thesis (Ph.D.)--Rensselaer Polytechnic Institute, 2008.
520
$a
This thesis presents two range data analysis methods to address challenges of modeling three-dimensional, outdoor, uncontrolled environments. We focus on scenes observed by ground-based, single-viewpoint laser-range scanners.
520
$a
First, we infer free-space, the empty volume between scanner and scene, and model it with a new representation, the Free-Space Polyhedron. We use the Free-Space Polyhedron to create a change detection system, suitable for scenes scanned at multiple times from varying locations, that marks as change indicators points from any scan that lie inside the free-space of other scans. A novel spatial data structure, the Spherical Quad-Tree, efficiently tests points for presence in each of the free-space models. We organize the models globally with a Scan Index Octree to avoid loading all data simultaneously. We demonstrate the system with real data from several scenes including one observed by scans acquired over a three-year period.
520
$a
Second, we make several theoretical contributions to the Tensor Voting Framework and then address practical issues of its application to range data analysis. An algebraic simplification of the voting procedure produces a closed-form tensor field that is both analytically differentiable and computationally cheaper than existing methods. We also replace the traditional vote attenuation profile with one that produces a smoother tensor field. Then, we propose a novel fine-to-coarse token selection and refinement procedure that makes Tensor Voting practical for analysis of range data. A sampling analysis determines parameters automatically for surface inference at any scale. We apply this method to extract terrain from natural scenes using a coarse-to-fine approach that spans gaps in the input caused by occlusion or missing data and adds detail where sampling is sufficient. Experiments show the method to be capable of producing desirable results on challenging cases in real scans.
590
$a
School code: 0185.
650
4
$a
Engineering, Robotics.
$3
1018454
650
4
$a
Artificial Intelligence.
$3
769149
650
4
$a
Computer Science.
$3
626642
690
$a
0771
690
$a
0800
690
$a
0984
710
2
$a
Rensselaer Polytechnic Institute.
$3
1019062
773
0
$t
Dissertation Abstracts International
$g
70-05B.
790
1 0
$a
Stewart, Charles V.,
$e
advisor
790
$a
0185
791
$a
Ph.D.
792
$a
2008
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3357225
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9160956
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入