語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Probabilistic adaptive mapping devel...
~
Wilson, Garnett Carl.
FindBook
Google Book
Amazon
博客來
Probabilistic adaptive mapping developmental genetic programming.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Probabilistic adaptive mapping developmental genetic programming./
作者:
Wilson, Garnett Carl.
面頁冊數:
225 p.
附註:
Source: Dissertation Abstracts International, Volume: 68-05, Section: B, page: 2744.
Contained By:
Dissertation Abstracts International68-05B.
標題:
Biology, Bioinformatics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=NR27171
ISBN:
9780494271711
Probabilistic adaptive mapping developmental genetic programming.
Wilson, Garnett Carl.
Probabilistic adaptive mapping developmental genetic programming.
- 225 p.
Source: Dissertation Abstracts International, Volume: 68-05, Section: B, page: 2744.
Thesis (Ph.D.)--Dalhousie University (Canada), 2007.
Keywords. developmental genetic programming, genetic code, cooperative coevolution, genotype-phenotype mapping, redundant representation, neutrality, recursion
ISBN: 9780494271711Subjects--Topical Terms:
1018415
Biology, Bioinformatics.
Probabilistic adaptive mapping developmental genetic programming.
LDR
:03313nam 2200253 a 45
001
947604
005
20110524
008
110524s2007 ||||||||||||||||| ||eng d
020
$a
9780494271711
035
$a
(UMI)AAINR27171
035
$a
AAINR27171
040
$a
UMI
$c
UMI
100
1
$a
Wilson, Garnett Carl.
$3
1271074
245
1 0
$a
Probabilistic adaptive mapping developmental genetic programming.
300
$a
225 p.
500
$a
Source: Dissertation Abstracts International, Volume: 68-05, Section: B, page: 2744.
502
$a
Thesis (Ph.D.)--Dalhousie University (Canada), 2007.
520
$a
Keywords. developmental genetic programming, genetic code, cooperative coevolution, genotype-phenotype mapping, redundant representation, neutrality, recursion
520
$a
Developmental Genetic Programming (DGP) algorithms explicitly enable the search space for a problem to be divided into genotypes and corresponding phenotypes. The two search spaces are often connected with a genotype-phenotype mapping (GPM) intended to model the biological genetic code, where current implementations of this concept involve evolution of the mappings along with evolution of the genotype solutions. This work presents the Probabilistic Adaptive Mapping DGP (PAM DGP) algorithm, a new developmental implementation that provides research contributions in the areas of GPMs and coevolution. The algorithm component of PAM DGP is demonstrated to overcome coevolutionary performance problems as identified and empirically benchmarked against the latest competing Adaptive Mapping algorithm with both algorithms using the same (non-redundant) mapping encoding process. Having established that PAM DGP provides a superior algorithmic framework given equivalent mapping and genotype structures for the individuals, a new adaptive redundant mapping is incorporated into PAM DGP for further performance enhancement and closer adherence to developmental modeling of the biological code. PAM DGP with two mapping types is then compared to the competing Adaptive Mapping algorithm and Traditional GP with respect to three regression benchmarks. PAM DGP using redundant mappings is then applied to two medical classification domains, where PAM DGP with redundant encodings is found to provide better classifier performance than the alternative algorithms. PAM DGP with redundant mappings is also given the task of learning three sequences of increasing recursion order given a function set consisting of general (not implicitly recursive) machine-language instructions; where it is found to more efficiently learn second and third order recursive Fibonacci functions than the related developmental systems and Traditional GP. PAM DGP using redundant encoding is also demonstrated to produce the semantically highest quality solutions for all three recursive functions considered (Factorial, second and third order Fibonacci). PAM DGP is shown for regression, medical classification, and recursive problems to have produced its solutions by evolving redundant mappings to emphasize appropriate members within relevant subsets of the problem's original function set.
590
$a
School code: 0328.
650
4
$a
Biology, Bioinformatics.
$3
1018415
690
$a
0715
710
2
$a
Dalhousie University (Canada).
$3
1017625
773
0
$t
Dissertation Abstracts International
$g
68-05B.
790
$a
0328
791
$a
Ph.D.
792
$a
2007
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=NR27171
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9115331
電子資源
11.線上閱覽_V
電子書
EB W9115331
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入