Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Linked to FindBook
Google Book
Amazon
博客來
Dynamic Structural Equation Modeling with Gaussian Processes.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Dynamic Structural Equation Modeling with Gaussian Processes./
Author:
Ziedzor, Reginald.
Description:
1 online resource (127 pages)
Notes:
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
Contained By:
Dissertations Abstracts International83-12B.
Subject:
Social sciences education. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29064764click for full text (PQDT)
ISBN:
9798819388464
Dynamic Structural Equation Modeling with Gaussian Processes.
Ziedzor, Reginald.
Dynamic Structural Equation Modeling with Gaussian Processes.
- 1 online resource (127 pages)
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
Thesis (Ph.D.)--Southern Illinois University at Carbondale, 2022.
Includes bibliographical references
The dynamic structural equation modeling (DSEM) framework incorporates hierarchical latent modeling (HLM), structural equation modeling (SEM), time series analysis (TSA), and time-varying effects modeling (TVEM) to model the dynamic relationship between latent and observed variables. To model the functional relationships between variables, a Gaussian process (GP), by definition of its covariance function(s), allows researchers to define Gaussian distributions over functions of input variables. Therefore, by incorporating GPs to model the presence of significant trend in either latent or observed variables, this dissertation explores the adequacy and performance of GPs in manipulated conditions of sample size using the flexible Bayesian analysis approach. The overall results of these Monte Carlo simulation studies showcase the ability of the multi-output GPs to properly explore the presence of trends. Also, in modeling intensive longitudinal data, GPs can be specified to properly account for trends, without generating significantly biased and imprecise estimates.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798819388464Subjects--Topical Terms:
2144735
Social sciences education.
Subjects--Index Terms:
Bayesian analysisIndex Terms--Genre/Form:
542853
Electronic books.
Dynamic Structural Equation Modeling with Gaussian Processes.
LDR
:02457nmm a2200385K 4500
001
2354697
005
20230501063856.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798819388464
035
$a
(MiAaPQ)AAI29064764
035
$a
AAI29064764
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Ziedzor, Reginald.
$3
3695057
245
1 0
$a
Dynamic Structural Equation Modeling with Gaussian Processes.
264
0
$c
2022
300
$a
1 online resource (127 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
500
$a
Advisor: Koran, Jennifer.
502
$a
Thesis (Ph.D.)--Southern Illinois University at Carbondale, 2022.
504
$a
Includes bibliographical references
520
$a
The dynamic structural equation modeling (DSEM) framework incorporates hierarchical latent modeling (HLM), structural equation modeling (SEM), time series analysis (TSA), and time-varying effects modeling (TVEM) to model the dynamic relationship between latent and observed variables. To model the functional relationships between variables, a Gaussian process (GP), by definition of its covariance function(s), allows researchers to define Gaussian distributions over functions of input variables. Therefore, by incorporating GPs to model the presence of significant trend in either latent or observed variables, this dissertation explores the adequacy and performance of GPs in manipulated conditions of sample size using the flexible Bayesian analysis approach. The overall results of these Monte Carlo simulation studies showcase the ability of the multi-output GPs to properly explore the presence of trends. Also, in modeling intensive longitudinal data, GPs can be specified to properly account for trends, without generating significantly biased and imprecise estimates.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Social sciences education.
$3
2144735
650
4
$a
Social studies education.
$3
3422293
650
4
$a
Educational psychology.
$3
517650
650
4
$a
Quantitative psychology.
$3
2144748
653
$a
Bayesian analysis
653
$a
Dynamic structural equation modeling
653
$a
Gaussian process
653
$a
Intensive longitudinal data
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0534
690
$a
0632
690
$a
0525
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Southern Illinois University at Carbondale.
$b
Quantitative Methods.
$3
3695058
773
0
$t
Dissertations Abstracts International
$g
83-12B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29064764
$z
click for full text (PQDT)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9477053
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login