Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Level-Set-XFEM-Density Topology Opti...
~
Geiss, Markus Josef.
Linked to FindBook
Google Book
Amazon
博客來
Level-Set-XFEM-Density Topology Optimization of Active Structures: Methods and Applications = = Level-Set-XFEM-Dichte Topologieoptimierung von Aktiven Strukturen: Methoden und Anwendungen.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Level-Set-XFEM-Density Topology Optimization of Active Structures: Methods and Applications =/
Reminder of title:
Level-Set-XFEM-Dichte Topologieoptimierung von Aktiven Strukturen: Methoden und Anwendungen.
Author:
Geiss, Markus Josef.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
Description:
318 p.
Notes:
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Contained By:
Dissertations Abstracts International80-12B.
Subject:
Mechanics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10978266
ISBN:
9781392164341
Level-Set-XFEM-Density Topology Optimization of Active Structures: Methods and Applications = = Level-Set-XFEM-Dichte Topologieoptimierung von Aktiven Strukturen: Methoden und Anwendungen.
Geiss, Markus Josef.
Level-Set-XFEM-Density Topology Optimization of Active Structures: Methods and Applications =
Level-Set-XFEM-Dichte Topologieoptimierung von Aktiven Strukturen: Methoden und Anwendungen. - Ann Arbor : ProQuest Dissertations & Theses, 2019 - 318 p.
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Thesis (Ph.D.)--University of Colorado at Boulder, 2019.
This item must not be sold to any third party vendors.
To unlock the potential of advanced manufacturing technologies like additive manufacturing, an inherent need for sophisticated design tools exists. In this thesis, a systematic approach for designing printed active structures using a combined level-set (LS) extended finite element (XFEM) density topology optimization (TO) scheme is developed. This combined scheme alleviates the downsides of both LS and density based TO approaches while building upon the advantages of either method. Thus, a superior design optimization approach is created, which, when coupled with the XFEM, yields a highly accurate physical modeling method. The unique capabilities of this combined approach include hole nucleation and minimum feature size control while retaining a crisp and unambiguous definition of the material interface. Different stabilization and regularization schemes are developed to maximize the robustness of the proposed method. Ensuring sufficient numerical stability during the TO process is especially critical when using large deformation nonlinear elasticity models. Without sufficient stabilization, divergence in the analysis or optimization process is frequently encountered. Therefore, a novel explicit LS regularization scheme, based on the construction of a signed distance field (SDF) for every design iteration, is developed in this thesis. It is also demonstrated that the obtained SDF can be used for minimum feature size control and control of the mean curvature during a TO process. Numerical design examples in 2D and 3D are presented to demonstrate the applicability of the proposed combined TO method. Physical specimens of 4D printed samples are used to validate the accuracy of the predicted structural performance by the developed thermomechanical large-strain XFEM model. Finally, conclusions and recommendations for future work are presented and the original contributions made in this thesis are summarized.
ISBN: 9781392164341Subjects--Topical Terms:
525881
Mechanics.
Level-Set-XFEM-Density Topology Optimization of Active Structures: Methods and Applications = = Level-Set-XFEM-Dichte Topologieoptimierung von Aktiven Strukturen: Methoden und Anwendungen.
LDR
:05431nmm a2200349 4500
001
2209008
005
20191025102632.5
008
201008s2019 ||||||||||||||||| ||eng d
020
$a
9781392164341
035
$a
(MiAaPQ)AAI10978266
035
$a
(MiAaPQ)colorado:15743
035
$a
AAI10978266
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Geiss, Markus Josef.
$3
3436086
245
1 0
$a
Level-Set-XFEM-Density Topology Optimization of Active Structures: Methods and Applications =
$b
Level-Set-XFEM-Dichte Topologieoptimierung von Aktiven Strukturen: Methoden und Anwendungen.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
318 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Maute, Kurt;Felippa, Carlos.
502
$a
Thesis (Ph.D.)--University of Colorado at Boulder, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
To unlock the potential of advanced manufacturing technologies like additive manufacturing, an inherent need for sophisticated design tools exists. In this thesis, a systematic approach for designing printed active structures using a combined level-set (LS) extended finite element (XFEM) density topology optimization (TO) scheme is developed. This combined scheme alleviates the downsides of both LS and density based TO approaches while building upon the advantages of either method. Thus, a superior design optimization approach is created, which, when coupled with the XFEM, yields a highly accurate physical modeling method. The unique capabilities of this combined approach include hole nucleation and minimum feature size control while retaining a crisp and unambiguous definition of the material interface. Different stabilization and regularization schemes are developed to maximize the robustness of the proposed method. Ensuring sufficient numerical stability during the TO process is especially critical when using large deformation nonlinear elasticity models. Without sufficient stabilization, divergence in the analysis or optimization process is frequently encountered. Therefore, a novel explicit LS regularization scheme, based on the construction of a signed distance field (SDF) for every design iteration, is developed in this thesis. It is also demonstrated that the obtained SDF can be used for minimum feature size control and control of the mean curvature during a TO process. Numerical design examples in 2D and 3D are presented to demonstrate the applicability of the proposed combined TO method. Physical specimens of 4D printed samples are used to validate the accuracy of the predicted structural performance by the developed thermomechanical large-strain XFEM model. Finally, conclusions and recommendations for future work are presented and the original contributions made in this thesis are summarized.
520
$a
Von Natur aus existiert ein Bedurfnis nach fortgeschrittenen Konstruktionsverfahren, um das volle Potential von zukunftsweisenden Fertigungstechnologien zu erschliesen. Nicht nur deshalb wird in dieser Dissertation eine systematische Herangehensweise zur Auslegung von aktiven Strukturen anhand einer kombinierten Level-Set (LS) Extended Finite Element (XFEM) Dichte Topologieoptimierungs (TO) Methode prasentiert. Diese kombinierte Methode reduziert die Nachteile der jeweilig einzelnen TO Verfahren und verbindet gleichzeitig die Vorteile von LS und Dichte Methoden. Dadurch entsteht ein ubergeordnetes TO Verfahren, welches in Kombination mit der XFEM ein hochgenaues physikalisches Modellierungsverfahren liefert. Die Alleinstellungsmerkmale dieses Designoptimierungsverfahrens beinhalten die Entstehung von Leerstellen, ein Kontrollmechanismus uber kleinstmogliche Kenngrosen, und eine klare und eindeutige Definition der Materialgrenzflachen. Dabei werden verschiedene Stabilisierungs- und Regularisierungsmasnahmen diskutiert, um die Robustheit der neu entwickelten TO Methode zu maximieren. Hierbei muss vor allem ausreichend numerische Stabilitat gegeben sein, wenn grose Verschiebungen und nichtlineare Phanomene wahrend eines TO Vorgangs in Betracht gezogen werden. Ohne eine ausreichende Stabilisierung tritt haufig Divergenz wahrend der Analyse oder des Optimierungsprozesses auf. Deshalb wird in dieser Arbeit ein neuartiges Regularisierungsverfahren fur explizite LS TO, basierend auf der Konstruktion einer Signierten Distanz Funktion (SDF), entwickelt und getestet. Auserdem kann die SDF zur Kontrolle der kleinstmoglichen Kenngrose und der mittleren Krummung der Materialgrenzflache wahrend eines TO Prozesses eingesetzt werden. Numerische Designbeispiele in 2D und 3D werden prasentiert, um die Anwendbarkeit der vorgeschlagenen kombinierten TO Methode zu demonstrieren. Die Gultigkeit und Genauigkeit des entwickelten thermomechanischen Modells unter grosen Verschiebungen werden anhand von 4D gedruckten Teststrukturen validiert. Zum Abschluss der Arbeit werden ein Fazit gezogen und Empfehlungen fur zukunftige Studien angefuhrt. Schlussendlich wird eine Zusammenfassung der ursprunglichen Beitrage dieser Dissertation prasentiert.
590
$a
School code: 0051.
650
4
$a
Mechanics.
$3
525881
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Computer science.
$3
523869
690
$a
0346
690
$a
0538
690
$a
0984
710
2
$a
University of Colorado at Boulder.
$b
Aerospace Engineering.
$3
1030473
773
0
$t
Dissertations Abstracts International
$g
80-12B.
790
$a
0051
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10978266
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9385557
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login