語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
De novo peptide sequencing using a h...
~
Andy, Anietie Umana.
FindBook
Google Book
Amazon
博客來
De novo peptide sequencing using a hidden Markov model.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
De novo peptide sequencing using a hidden Markov model./
作者:
Andy, Anietie Umana.
面頁冊數:
31 p.
附註:
Source: Masters Abstracts International, Volume: 48-03, page: 1679.
Contained By:
Masters Abstracts International48-03.
標題:
Biology, Bioinformatics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1473418
ISBN:
9781109560329
De novo peptide sequencing using a hidden Markov model.
Andy, Anietie Umana.
De novo peptide sequencing using a hidden Markov model.
- 31 p.
Source: Masters Abstracts International, Volume: 48-03, page: 1679.
Thesis (M.S.)--Howard University, 2010.
The amino acid sequence of a protein has to be determined in order to solve its structure and function. De novo sequencing is a process where peptide sequences are derived from the mass / charge ratios of their fragments as shown on a tandem mass spectrum. When performing de novo sequencing, no protein sequence database is used for reference. In this thesis we present a method for de novo peptide sequencing based on a hidden Markov model. Experiments show that this approach is highly effective, predicting the most likely sequence and scores the accuracy of the prediction.
ISBN: 9781109560329Subjects--Topical Terms:
1018415
Biology, Bioinformatics.
De novo peptide sequencing using a hidden Markov model.
LDR
:01498nam 2200301 4500
001
1393194
005
20110311132628.5
008
130515s2010 ||||||||||||||||| ||eng d
020
$a
9781109560329
035
$a
(UMI)AAI1473418
035
$a
AAI1473418
040
$a
UMI
$c
UMI
100
1
$a
Andy, Anietie Umana.
$3
1671691
245
1 0
$a
De novo peptide sequencing using a hidden Markov model.
300
$a
31 p.
500
$a
Source: Masters Abstracts International, Volume: 48-03, page: 1679.
500
$a
Adviser: Chunmei Liu.
502
$a
Thesis (M.S.)--Howard University, 2010.
520
$a
The amino acid sequence of a protein has to be determined in order to solve its structure and function. De novo sequencing is a process where peptide sequences are derived from the mass / charge ratios of their fragments as shown on a tandem mass spectrum. When performing de novo sequencing, no protein sequence database is used for reference. In this thesis we present a method for de novo peptide sequencing based on a hidden Markov model. Experiments show that this approach is highly effective, predicting the most likely sequence and scores the accuracy of the prediction.
590
$a
School code: 0088.
650
4
$a
Biology, Bioinformatics.
$3
1018415
650
4
$a
Computer Science.
$3
626642
690
$a
0715
690
$a
0984
710
2
$a
Howard University.
$b
Systems and Computer Science.
$3
1671692
773
0
$t
Masters Abstracts International
$g
48-03.
790
1 0
$a
Liu, Chunmei,
$e
advisor
790
1 0
$a
Burge, Legand
$e
committee member
790
1 0
$a
Li, Jiang
$e
committee member
790
$a
0088
791
$a
M.S.
792
$a
2010
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1473418
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9156333
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入