語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Evolutionary granular kernel machines.
~
Jin, Bo.
FindBook
Google Book
Amazon
博客來
Evolutionary granular kernel machines.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Evolutionary granular kernel machines./
作者:
Jin, Bo.
面頁冊數:
120 p.
附註:
Adviser: Yan-Qing Zhang.
Contained By:
Dissertation Abstracts International68-04B.
標題:
Biology, Bioinformatics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3260562
Evolutionary granular kernel machines.
Jin, Bo.
Evolutionary granular kernel machines.
- 120 p.
Adviser: Yan-Qing Zhang.
Thesis (Ph.D.)--Georgia State University, 2007.
Kernel machines such as Support Vector Machines (SVMs) have been widely used in various data mining applications with good generalization properties. Performance of SVMs for solving nonlinear problems is highly affected by kernel functions. The complexity of SVMs training is mainly related to the size of a training dataset. How to design a powerful kernel, how to speed up SVMs training and how to train SVMs with millions of examples are still challenging problems in the SVMs research.Subjects--Topical Terms:
1018415
Biology, Bioinformatics.
Evolutionary granular kernel machines.
LDR
:02541nam 2200289 a 45
001
955984
005
20110623
008
110624s2007 ||||||||||||||||| ||eng d
035
$a
(UMI)AAI3260562
035
$a
AAI3260562
040
$a
UMI
$c
UMI
100
1
$a
Jin, Bo.
$3
1279430
245
1 0
$a
Evolutionary granular kernel machines.
300
$a
120 p.
500
$a
Adviser: Yan-Qing Zhang.
500
$a
Source: Dissertation Abstracts International, Volume: 68-04, Section: B, page: 2446.
502
$a
Thesis (Ph.D.)--Georgia State University, 2007.
520
$a
Kernel machines such as Support Vector Machines (SVMs) have been widely used in various data mining applications with good generalization properties. Performance of SVMs for solving nonlinear problems is highly affected by kernel functions. The complexity of SVMs training is mainly related to the size of a training dataset. How to design a powerful kernel, how to speed up SVMs training and how to train SVMs with millions of examples are still challenging problems in the SVMs research.
520
$a
For these important problems, powerful and flexible kernel trees called Evolutionary Granular Kernel Trees (EGKTs) are designed to incorporate prior domain knowledge. Granular Kernel Tree Structure Evolving System (GKTSES) is developed to evolve the structures of Granular Kernel Trees (GKTs) without prior knowledge. A voting scheme is also proposed to reduce the prediction deviation of GKTSES. To speed up EGKTs optimization, a master-slave parallel model is implemented. To help SVMs challenge large-scale data mining, a Minimum Enclosing Ball (MEB) based data reduction method is presented, and a new MEB-SVM algorithm is designed. All these kernel methods are designed based on Granular Computing (GrC). In general, Evolutionary Granular Kernel Machines (EGKMs) are investigated to optimize kernels effectively, speed up training greatly and mine huge amounts of data efficiently.
520
$a
Index words. Bioinformatics, Computational Intelligence, Data Mining, Evolutionary Granular Kernel Machines, Evolutionary Granular Kernel Trees, Genetic Algorithms, Granular Computing, Granular Kernel Tree Structure Evolving System, Machine Learning, Minimum Enclosing Ball, Statistical Learning, Support Vector Machines
590
$a
School code: 0079.
650
4
$a
Biology, Bioinformatics.
$3
1018415
650
4
$a
Computer Science.
$3
626642
690
$a
0715
690
$a
0984
710
2
$a
Georgia State University.
$3
1018518
773
0
$t
Dissertation Abstracts International
$g
68-04B.
790
$a
0079
790
1 0
$a
Zhang, Yan-Qing,
$e
advisor
791
$a
Ph.D.
792
$a
2007
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3260562
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9120226
電子資源
11.線上閱覽_V
電子書
EB W9120226
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入