語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Boundary value problems of fully non...
~
Chen, Szu-Yu.
FindBook
Google Book
Amazon
博客來
Boundary value problems of fully nonlinear equations in conformal geometry.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Boundary value problems of fully nonlinear equations in conformal geometry./
作者:
Chen, Szu-Yu.
面頁冊數:
100 p.
附註:
Adviser: Sun-Yung Alice Chang.
Contained By:
Dissertation Abstracts International67-02B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3208879
ISBN:
9780542572173
Boundary value problems of fully nonlinear equations in conformal geometry.
Chen, Szu-Yu.
Boundary value problems of fully nonlinear equations in conformal geometry.
- 100 p.
Adviser: Sun-Yung Alice Chang.
Thesis (Ph.D.)--Princeton University, 2006.
In this thesis, we consider boundary value problems for a class of fully nonlinear partial differential equations in conformal geometry. This class of equations arises from the study of the integrand in the Gauss-Bonnet formula under conformal deformations. A key step in achieving the existence of solutions for such equations is to derive a priori estimates. The main advantage of our method in achieving these estimates is to get C 2 estimates directly from C0 estimates, and obtain C1 estimates as a consequence. The method is also applicable to a large class of fully nonlinear partial differential equations. We will prove the existence theorems and apply them to studies of conformal geometry on manifolds with boundary and conformally compact Einstein manifolds.
ISBN: 9780542572173Subjects--Topical Terms:
515831
Mathematics.
Boundary value problems of fully nonlinear equations in conformal geometry.
LDR
:01637nam 2200265 a 45
001
954255
005
20110622
008
110622s2006 eng d
020
$a
9780542572173
035
$a
(UMI)AAI3208879
035
$a
AAI3208879
040
$a
UMI
$c
UMI
100
1
$a
Chen, Szu-Yu.
$3
1277728
245
1 0
$a
Boundary value problems of fully nonlinear equations in conformal geometry.
300
$a
100 p.
500
$a
Adviser: Sun-Yung Alice Chang.
500
$a
Source: Dissertation Abstracts International, Volume: 67-02, Section: B, page: 0923.
502
$a
Thesis (Ph.D.)--Princeton University, 2006.
520
$a
In this thesis, we consider boundary value problems for a class of fully nonlinear partial differential equations in conformal geometry. This class of equations arises from the study of the integrand in the Gauss-Bonnet formula under conformal deformations. A key step in achieving the existence of solutions for such equations is to derive a priori estimates. The main advantage of our method in achieving these estimates is to get C 2 estimates directly from C0 estimates, and obtain C1 estimates as a consequence. The method is also applicable to a large class of fully nonlinear partial differential equations. We will prove the existence theorems and apply them to studies of conformal geometry on manifolds with boundary and conformally compact Einstein manifolds.
590
$a
School code: 0181.
650
4
$a
Mathematics.
$3
515831
690
$a
0405
710
2
$a
Princeton University.
$3
645579
773
0
$t
Dissertation Abstracts International
$g
67-02B.
790
$a
0181
790
1 0
$a
Chang, Sun-Yung Alice,
$e
advisor
791
$a
Ph.D.
792
$a
2006
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3208879
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9118734
電子資源
11.線上閱覽_V
電子書
EB W9118734
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入