語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Extensions of hierarchical Bayesian ...
~
Ni, Jun.
FindBook
Google Book
Amazon
博客來
Extensions of hierarchical Bayesian shrinkage estimation with applications to a marketing science problem.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Extensions of hierarchical Bayesian shrinkage estimation with applications to a marketing science problem./
作者:
Ni, Jun.
面頁冊數:
118 p.
附註:
Adviser: John Grego.
Contained By:
Dissertation Abstracts International68-08B.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3280344
ISBN:
9780549210818
Extensions of hierarchical Bayesian shrinkage estimation with applications to a marketing science problem.
Ni, Jun.
Extensions of hierarchical Bayesian shrinkage estimation with applications to a marketing science problem.
- 118 p.
Adviser: John Grego.
Thesis (Ph.D.)--University of South Carolina, 2007.
In multi-level modeling, occasionally improper or unreasonable parameter estimates are obtained using the usual regression or ordinary multi-level modeling techniques. Motivated by this estimation problem, this dissertation research develops and extends the Bayesian Hierarchical Modeling approach to produce shrinkage in the posterior parameter estimators, and thus improve the parameter estimation. Lindley and Smith [1972] described two types of regression models based on exchangeability assumptions on parameters for linear models in their classic paper: exchangeability between regressions and exchangeability within multiple regressions. By combining the two types of assumptions, the posterior estimators will have "Dual-shrinkage" properties (Shrinkage in two directions) and thus behave more properly. Markov Chain Monte Carlo (MCMC) sampling procedures are utilized to simulate the parameter posterior distributions. Specifically, Gibbs Sampling and Metropolis-Hastings within Gibbs Sampling algorithms are programmed in R to obtain the posterior estimates. Then the combined model is generalized to allow between and within correlation assumptions. Lastly, the model and estimation procedures are applied to a consumer packaged goods product data set.
ISBN: 9780549210818Subjects--Topical Terms:
517247
Statistics.
Extensions of hierarchical Bayesian shrinkage estimation with applications to a marketing science problem.
LDR
:02148nam 2200265 a 45
001
949301
005
20110525
008
110525s2007 ||||||||||||||||| ||eng d
020
$a
9780549210818
035
$a
(UMI)AAI3280344
035
$a
AAI3280344
040
$a
UMI
$c
UMI
100
1
$a
Ni, Jun.
$3
1263223
245
1 0
$a
Extensions of hierarchical Bayesian shrinkage estimation with applications to a marketing science problem.
300
$a
118 p.
500
$a
Adviser: John Grego.
500
$a
Source: Dissertation Abstracts International, Volume: 68-08, Section: B, page: 5331.
502
$a
Thesis (Ph.D.)--University of South Carolina, 2007.
520
$a
In multi-level modeling, occasionally improper or unreasonable parameter estimates are obtained using the usual regression or ordinary multi-level modeling techniques. Motivated by this estimation problem, this dissertation research develops and extends the Bayesian Hierarchical Modeling approach to produce shrinkage in the posterior parameter estimators, and thus improve the parameter estimation. Lindley and Smith [1972] described two types of regression models based on exchangeability assumptions on parameters for linear models in their classic paper: exchangeability between regressions and exchangeability within multiple regressions. By combining the two types of assumptions, the posterior estimators will have "Dual-shrinkage" properties (Shrinkage in two directions) and thus behave more properly. Markov Chain Monte Carlo (MCMC) sampling procedures are utilized to simulate the parameter posterior distributions. Specifically, Gibbs Sampling and Metropolis-Hastings within Gibbs Sampling algorithms are programmed in R to obtain the posterior estimates. Then the combined model is generalized to allow between and within correlation assumptions. Lastly, the model and estimation procedures are applied to a consumer packaged goods product data set.
590
$a
School code: 0202.
650
4
$a
Statistics.
$3
517247
690
$a
0463
710
2
$a
University of South Carolina.
$3
1017477
773
0
$t
Dissertation Abstracts International
$g
68-08B.
790
$a
0202
790
1 0
$a
Grego, John,
$e
advisor
791
$a
Ph.D.
792
$a
2007
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3280344
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9116928
電子資源
11.線上閱覽_V
電子書
EB W9116928
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入