Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Regulation of eukaryotic transcripti...
~
Venkatasubrahmanyam, Shivkumar.
Linked to FindBook
Google Book
Amazon
博客來
Regulation of eukaryotic transcription by modification of chromatin structure.
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Regulation of eukaryotic transcription by modification of chromatin structure./
Author:
Venkatasubrahmanyam, Shivkumar.
Description:
236 p.
Notes:
Adviser: Hiten D. Madhani.
Contained By:
Dissertation Abstracts International68-04B.
Subject:
Biology, Bioinformatics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3261249
Regulation of eukaryotic transcription by modification of chromatin structure.
Venkatasubrahmanyam, Shivkumar.
Regulation of eukaryotic transcription by modification of chromatin structure.
- 236 p.
Adviser: Hiten D. Madhani.
Thesis (Ph.D.)--University of California, San Francisco, 2007.
Modification of chromatin is a highly conserved and fundamental mode of transcriptional regulation in eukaryotes. Chromatin structure can be altered by covalent histone modification, variant histone incorporation and nucleosome remodeling. This thesis describes the study of these mechanisms in a model eukaryote, the budding yeast S. cerevisiae. Methylation of histone H3 on lysine 4 (K4) by Set1, the yeast homolog of human leukemia-related methyltransferases MLL1 and ALL1, is enriched along coding sequences and associated with active transcription. In contrast, the histone variant H2A.Z is found exclusively at the two nucleosomes flanking the transcription start site. H2A.Z regulates the spread of Sir-mediated silencing, which was believed to occur only in the vicinity of telomeres. Through the collaborative research detailed within, I identified members of the Set1 complex in a genetic screen for factors that cooperate with H2A.Z to antagonize Sir activity. I found that Set1 and H2A.Z share a genome-wide anti-silencing function that prevents ectopic binding and gene repression by the Sir2/3/4 complex across euchromatin. Exploring such functional redundancies between various chromatin modifiers will be important to fully understand their roles in transcription. Further collaborations led to the discovery of mechanisms that operate upstream of H2A.Z and Set1. H2A.Z interacts with a complex of 13 proteins, including the SWI/SNF-related ATPase Swr1. Swr1 is required for incorporation of H2A.Z into chromatin; loss of Swr1 or H2A.Z results in similar gene expression defects. H3 K4 methylation by Set1 requires histone H2B K123 mono-ubiquitination, which involves the E2 ubiquitin-conjugating enzyme Rad6. The RING-finger protein Bre1 is required for this modification. Rad6 acts on multiple protein targets; this putative E3 ubiquitin-ligase is likely to direct the mono-ubiquitination activity of Rad6 onto H2B. Finally, I have developed a software tool for the analysis of chromatin-profiling data from high-density tiling oligonucleotide microarrays. The use of this tool has shown that Sth1, an essential chromatin-remodeling enzyme and member of the RSC complex, slides nucleosomes around the 5' ends of coding sequences away from their predicted positions at nucleosome-positioning sequences (NPS). Thus nucleosome appear to be positioned by a combination of cis- and trans-acting factors.Subjects--Topical Terms:
1018415
Biology, Bioinformatics.
Regulation of eukaryotic transcription by modification of chromatin structure.
LDR
:03420nam 2200301 a 45
001
947577
005
20110524
008
110524s2007 ||||||||||||||||| ||eng d
035
$a
(UMI)AAI3261249
035
$a
AAI3261249
040
$a
UMI
$c
UMI
100
1
$a
Venkatasubrahmanyam, Shivkumar.
$3
1271047
245
1 0
$a
Regulation of eukaryotic transcription by modification of chromatin structure.
300
$a
236 p.
500
$a
Adviser: Hiten D. Madhani.
500
$a
Source: Dissertation Abstracts International, Volume: 68-04, Section: B, page: 2098.
502
$a
Thesis (Ph.D.)--University of California, San Francisco, 2007.
520
$a
Modification of chromatin is a highly conserved and fundamental mode of transcriptional regulation in eukaryotes. Chromatin structure can be altered by covalent histone modification, variant histone incorporation and nucleosome remodeling. This thesis describes the study of these mechanisms in a model eukaryote, the budding yeast S. cerevisiae. Methylation of histone H3 on lysine 4 (K4) by Set1, the yeast homolog of human leukemia-related methyltransferases MLL1 and ALL1, is enriched along coding sequences and associated with active transcription. In contrast, the histone variant H2A.Z is found exclusively at the two nucleosomes flanking the transcription start site. H2A.Z regulates the spread of Sir-mediated silencing, which was believed to occur only in the vicinity of telomeres. Through the collaborative research detailed within, I identified members of the Set1 complex in a genetic screen for factors that cooperate with H2A.Z to antagonize Sir activity. I found that Set1 and H2A.Z share a genome-wide anti-silencing function that prevents ectopic binding and gene repression by the Sir2/3/4 complex across euchromatin. Exploring such functional redundancies between various chromatin modifiers will be important to fully understand their roles in transcription. Further collaborations led to the discovery of mechanisms that operate upstream of H2A.Z and Set1. H2A.Z interacts with a complex of 13 proteins, including the SWI/SNF-related ATPase Swr1. Swr1 is required for incorporation of H2A.Z into chromatin; loss of Swr1 or H2A.Z results in similar gene expression defects. H3 K4 methylation by Set1 requires histone H2B K123 mono-ubiquitination, which involves the E2 ubiquitin-conjugating enzyme Rad6. The RING-finger protein Bre1 is required for this modification. Rad6 acts on multiple protein targets; this putative E3 ubiquitin-ligase is likely to direct the mono-ubiquitination activity of Rad6 onto H2B. Finally, I have developed a software tool for the analysis of chromatin-profiling data from high-density tiling oligonucleotide microarrays. The use of this tool has shown that Sth1, an essential chromatin-remodeling enzyme and member of the RSC complex, slides nucleosomes around the 5' ends of coding sequences away from their predicted positions at nucleosome-positioning sequences (NPS). Thus nucleosome appear to be positioned by a combination of cis- and trans-acting factors.
590
$a
School code: 0034.
650
4
$a
Biology, Bioinformatics.
$3
1018415
650
4
$a
Biology, Genetics.
$3
1017730
650
4
$a
Biology, Molecular.
$3
1017719
690
$a
0307
690
$a
0369
690
$a
0715
710
2
$a
University of California, San Francisco.
$b
Biochemistry and Molecular Biology.
$3
1263088
773
0
$t
Dissertation Abstracts International
$g
68-04B.
790
$a
0034
790
1 0
$a
Johnson, Alexander D.
$e
committee member
790
1 0
$a
Madhani, Hiten D.,
$e
advisor
790
1 0
$a
Weissman, Jonathan S.
$e
committee member
791
$a
Ph.D.
792
$a
2007
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3261249
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9115304
電子資源
11.線上閱覽_V
電子書
EB W9115304
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login