語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Kahler-Einstein metrics and Sobolev ...
~
Sun, Jian.
FindBook
Google Book
Amazon
博客來
Kahler-Einstein metrics and Sobolev inequality.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Kahler-Einstein metrics and Sobolev inequality./
作者:
Sun, Jian.
面頁冊數:
77 p.
附註:
Adviser: Kevin Corlette.
Contained By:
Dissertation Abstracts International61-03B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9965165
ISBN:
0599696788
Kahler-Einstein metrics and Sobolev inequality.
Sun, Jian.
Kahler-Einstein metrics and Sobolev inequality.
- 77 p.
Adviser: Kevin Corlette.
Thesis (Ph.D.)--The University of Chicago, 2000.
This thesis is divided into two parts. In the first part we will show that there exists a Kähler-Einstein metric on the open Riemann surfaces which is continuously dependent on the initial value. We then generalize this to the higher dimensional complex manifolds, in particular we point out that the metric constructed by Yau-Cheng, Tian, Kobayashi depends continuously on the initial values. We also proved a general theorem about the existence of Kähler-Einstein metric. In the second part of the thesis we prove a Sobolev-Nirenberg type inequality on the real algebraic set. We believe that this result could be fundamentally important to the study of analytic and geometric properties of the real algebraic set.
ISBN: 0599696788Subjects--Topical Terms:
515831
Mathematics.
Kahler-Einstein metrics and Sobolev inequality.
LDR
:01554nam 2200265 a 45
001
934817
005
20110509
008
110509s2000 eng d
020
$a
0599696788
035
$a
(UnM)AAI9965165
035
$a
AAI9965165
040
$a
UnM
$c
UnM
100
1
$a
Sun, Jian.
$3
1031963
245
1 0
$a
Kahler-Einstein metrics and Sobolev inequality.
300
$a
77 p.
500
$a
Adviser: Kevin Corlette.
500
$a
Source: Dissertation Abstracts International, Volume: 61-03, Section: B, page: 1444.
502
$a
Thesis (Ph.D.)--The University of Chicago, 2000.
520
$a
This thesis is divided into two parts. In the first part we will show that there exists a Kähler-Einstein metric on the open Riemann surfaces which is continuously dependent on the initial value. We then generalize this to the higher dimensional complex manifolds, in particular we point out that the metric constructed by Yau-Cheng, Tian, Kobayashi depends continuously on the initial values. We also proved a general theorem about the existence of Kähler-Einstein metric. In the second part of the thesis we prove a Sobolev-Nirenberg type inequality on the real algebraic set. We believe that this result could be fundamentally important to the study of analytic and geometric properties of the real algebraic set.
590
$a
School code: 0330.
650
4
$a
Mathematics.
$3
515831
690
$a
0405
710
2 0
$a
The University of Chicago.
$3
1017389
773
0
$t
Dissertation Abstracts International
$g
61-03B.
790
$a
0330
790
1 0
$a
Corlette, Kevin,
$e
advisor
791
$a
Ph.D.
792
$a
2000
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9965165
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9105414
電子資源
11.線上閱覽_V
電子書
EB W9105414
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入