語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Robust fusion of MRI and ECT data, a...
~
University of Michigan.
FindBook
Google Book
Amazon
博客來
Robust fusion of MRI and ECT data, and acceleration of EM algorithm using proximal point approach.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Robust fusion of MRI and ECT data, and acceleration of EM algorithm using proximal point approach./
作者:
Piramuthu, Robinson.
面頁冊數:
229 p.
附註:
Chairperson: Alfred O. Hero, III.
Contained By:
Dissertation Abstracts International61-07B.
標題:
Engineering, Electronics and Electrical. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9977239
ISBN:
0599832983
Robust fusion of MRI and ECT data, and acceleration of EM algorithm using proximal point approach.
Piramuthu, Robinson.
Robust fusion of MRI and ECT data, and acceleration of EM algorithm using proximal point approach.
- 229 p.
Chairperson: Alfred O. Hero, III.
Thesis (Ph.D.)--University of Michigan, 2000.
A robust multisensor fusion approach to use prior information from one sensor data to regularize an inverse problem based on another sensor data is presented. The robust approach is based on minimax rules. We apply this method to an application in medical imaging where anatomical boundary information from Magnetic Resonance Imaging (MRI) or X-ray Computed Tomography data is used to improve Emission Computed Tomography (ECT) image reconstruction.
ISBN: 0599832983Subjects--Topical Terms:
626636
Engineering, Electronics and Electrical.
Robust fusion of MRI and ECT data, and acceleration of EM algorithm using proximal point approach.
LDR
:02568nam 2200325 a 45
001
929293
005
20110427
008
110427s2000 eng d
020
$a
0599832983
035
$a
(UnM)AAI9977239
035
$a
AAI9977239
040
$a
UnM
$c
UnM
100
1
$a
Piramuthu, Robinson.
$3
1252777
245
1 0
$a
Robust fusion of MRI and ECT data, and acceleration of EM algorithm using proximal point approach.
300
$a
229 p.
500
$a
Chairperson: Alfred O. Hero, III.
500
$a
Source: Dissertation Abstracts International, Volume: 61-07, Section: B, page: 3763.
502
$a
Thesis (Ph.D.)--University of Michigan, 2000.
520
$a
A robust multisensor fusion approach to use prior information from one sensor data to regularize an inverse problem based on another sensor data is presented. The robust approach is based on minimax rules. We apply this method to an application in medical imaging where anatomical boundary information from Magnetic Resonance Imaging (MRI) or X-ray Computed Tomography data is used to improve Emission Computed Tomography (ECT) image reconstruction.
520
$a
A parametric model is used to extract boundary information from MRI image. We derive asymptotic expressions for Cramèr-Rao (CR) bound for extraction for 2-D and 3-D shapes and present shapes that are estimated with least uncertainty and most uncertainty. We also discuss how to find the optimum center to extract the shape with least uncertainty.
520
$a
We derive an asymptotic expression for the minimax objective to get a penalized likelihood objective with quadratic penalty. The penalty weights are smoothed proportional to the uncertainty in boundary estimate. We implement a method that approximates this asymptotic approach to combine 2-D MRI and ECT data. Robustness of estimate of radioactive tracer uptake in a simple region of interest is achieved using this method.
520
$a
Finally, we apply proximal point approach to accelerate the Expectation Maximization (EM) algorithm. The EM algorithm is used to maximize likelihood and has linear convergence rate. Hence acceleration of EM algorithm is essential. The method is applied for two separate problems namely, reconstruction of 1-D signal and 2-D image from their noisy projections.
590
$a
School code: 0127.
650
4
$a
Engineering, Electronics and Electrical.
$3
626636
650
4
$a
Health Sciences, Radiology.
$3
1019076
650
4
$a
Statistics.
$3
517247
690
$a
0463
690
$a
0544
690
$a
0574
710
2 0
$a
University of Michigan.
$3
777416
773
0
$t
Dissertation Abstracts International
$g
61-07B.
790
$a
0127
790
1 0
$a
Hero, Alfred O., III,
$e
advisor
791
$a
Ph.D.
792
$a
2000
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9977239
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9100597
電子資源
11.線上閱覽_V
電子書
EB W9100597
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入