語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Resampling approach for estimating p...
~
Li, Wei.
FindBook
Google Book
Amazon
博客來
Resampling approach for estimating prediction error and for adjusting logistic regression models for covariate measurement error.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Resampling approach for estimating prediction error and for adjusting logistic regression models for covariate measurement error./
作者:
Li, Wei.
面頁冊數:
78 p.
附註:
Advisers: Sati Mazumdar; Vincent C. Arena.
Contained By:
Dissertation Abstracts International63-05B.
標題:
Biology, Biostatistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3054302
ISBN:
0493695850
Resampling approach for estimating prediction error and for adjusting logistic regression models for covariate measurement error.
Li, Wei.
Resampling approach for estimating prediction error and for adjusting logistic regression models for covariate measurement error.
- 78 p.
Advisers: Sati Mazumdar; Vincent C. Arena.
Thesis (Ph.D.)--University of Pittsburgh, 2002.
Methods based on the resampling approach are proposed to address two issues related to prediction modeling: estimation of prediction error and adjustment for covariance measurement error.
ISBN: 0493695850Subjects--Topical Terms:
1018416
Biology, Biostatistics.
Resampling approach for estimating prediction error and for adjusting logistic regression models for covariate measurement error.
LDR
:02778nam 2200313 a 45
001
929156
005
20110427
008
110427s2002 eng d
020
$a
0493695850
035
$a
(UnM)AAI3054302
035
$a
AAI3054302
040
$a
UnM
$c
UnM
100
1
$a
Li, Wei.
$3
884990
245
1 0
$a
Resampling approach for estimating prediction error and for adjusting logistic regression models for covariate measurement error.
300
$a
78 p.
500
$a
Advisers: Sati Mazumdar; Vincent C. Arena.
500
$a
Source: Dissertation Abstracts International, Volume: 63-05, Section: B, page: 2146.
502
$a
Thesis (Ph.D.)--University of Pittsburgh, 2002.
520
$a
Methods based on the resampling approach are proposed to address two issues related to prediction modeling: estimation of prediction error and adjustment for covariance measurement error.
520
$a
<italic>Repartitioning k-fold cross-validation</italic> (CV<italic>K </italic>R) is proposed to enhance the estimation of the prediction error of classification models. Compared to cross-validation, the traditional method of choice, CV<italic>K</italic>R reduces the variability of estimated prediction error. In addition, it provides an empirical distribution of prediction error rather than a single estimate unaccompanied by an estimate of standard error for the point estimate. SAS macros are developed for the implementation of CV<italic>K</italic>R.
520
$a
<italic>Bootstrap regression calibration</italic> (<italic>BRC</italic>) is proposed to adjust the coefficient estimates of logistic regression models when measurement error is present in model covariates. This method can be thought of as a bootstrap-smoothed version of the popular regression calibration method (Rosner et al. <italic>AM. J. Epidemiol.</italic> 1990, 1992). These two methods are evaluated and compared with respect to <italic>prediction accuracy</italic>, something not found in previous works. Receiver Operating Characteristic (ROC) methodology was employed to measure models' prediction accuracy and the area under ROC curve (AUC) was used as the index for prediction accuracy. The methods were also evaluated with respect to the attenuation (or bias) in the estimated coefficients. Results from simulation studies showed that BRC offers consistent enhancement over the regression calibration method in terms of improving the prediction accuracy and reducing bias in estimated coefficients.
590
$a
School code: 0178.
650
4
$a
Biology, Biostatistics.
$3
1018416
650
4
$a
Statistics.
$3
517247
690
$a
0308
690
$a
0463
710
2 0
$a
University of Pittsburgh.
$3
958527
773
0
$t
Dissertation Abstracts International
$g
63-05B.
790
$a
0178
790
1 0
$a
Arena, Vincent C.,
$e
advisor
790
1 0
$a
Mazumdar, Sati,
$e
advisor
791
$a
Ph.D.
792
$a
2002
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3054302
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9100460
電子資源
11.線上閱覽_V
電子書
EB W9100460
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入