語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Improving hierarchical multiclass pe...
~
The University of Texas at Dallas.
FindBook
Google Book
Amazon
博客來
Improving hierarchical multiclass perceptrons for entity detection using Google Sets and pronoun disambiguation.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Improving hierarchical multiclass perceptrons for entity detection using Google Sets and pronoun disambiguation./
作者:
Quinn, Michael.
面頁冊數:
61 p.
附註:
Adviser: Vincent Ng.
Contained By:
Masters Abstracts International46-05.
標題:
Computer Science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1452726
ISBN:
9780549526667
Improving hierarchical multiclass perceptrons for entity detection using Google Sets and pronoun disambiguation.
Quinn, Michael.
Improving hierarchical multiclass perceptrons for entity detection using Google Sets and pronoun disambiguation.
- 61 p.
Adviser: Vincent Ng.
Thesis (M.S.C.S.)--The University of Texas at Dallas, 2008.
Entity detection is the process of identifying objects in a body of text and correctly classifying each object into one of a set of predefined types. I propose two extensions to improve the performance of hierarchical multiclass perceptrons when used to solve entity detection. The first extension is to use Google Sets to automatically generate training instances. This will address the problems of too few training instances and high unseen word rates. The second extension is to disambiguate pronouns by identifying the influences on the pronoun classification, and using those influences as features. This will address the problem that pronouns carry less information than nominals and proper nouns. A noticeable improvement in F-measure was seen using the combination of these two approaches.
ISBN: 9780549526667Subjects--Topical Terms:
626642
Computer Science.
Improving hierarchical multiclass perceptrons for entity detection using Google Sets and pronoun disambiguation.
LDR
:01675nmm 2200265 a 45
001
886344
005
20101007
008
101007s2008 ||||||||||||||||| ||eng d
020
$a
9780549526667
035
$a
(UMI)AAI1452726
035
$a
AAI1452726
040
$a
UMI
$c
UMI
100
1
$a
Quinn, Michael.
$3
689458
245
1 0
$a
Improving hierarchical multiclass perceptrons for entity detection using Google Sets and pronoun disambiguation.
300
$a
61 p.
500
$a
Adviser: Vincent Ng.
500
$a
Source: Masters Abstracts International, Volume: 46-05, page: 2732.
502
$a
Thesis (M.S.C.S.)--The University of Texas at Dallas, 2008.
520
$a
Entity detection is the process of identifying objects in a body of text and correctly classifying each object into one of a set of predefined types. I propose two extensions to improve the performance of hierarchical multiclass perceptrons when used to solve entity detection. The first extension is to use Google Sets to automatically generate training instances. This will address the problems of too few training instances and high unseen word rates. The second extension is to disambiguate pronouns by identifying the influences on the pronoun classification, and using those influences as features. This will address the problem that pronouns carry less information than nominals and proper nouns. A noticeable improvement in F-measure was seen using the combination of these two approaches.
590
$a
School code: 0382.
650
4
$a
Computer Science.
$3
626642
690
$a
0984
710
2
$a
The University of Texas at Dallas.
$3
1018411
773
0
$t
Masters Abstracts International
$g
46-05.
790
$a
0382
790
1 0
$a
Ng, Vincent,
$e
advisor
791
$a
M.S.C.S.
792
$a
2008
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1452726
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9081646
電子資源
11.線上閱覽_V
電子書
EB W9081646
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入