語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Support vector classification for ge...
~
University of Alberta (Canada).
FindBook
Google Book
Amazon
博客來
Support vector classification for geostatistical modeling of categorical variables.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Support vector classification for geostatistical modeling of categorical variables./
作者:
Gallardo Vizcaino, Enrique Carlos.
面頁冊數:
118 p.
附註:
Source: Masters Abstracts International, Volume: 48-02, page: .
Contained By:
Masters Abstracts International48-02.
標題:
Engineering, Geological. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=MR52394
ISBN:
9780494523940
Support vector classification for geostatistical modeling of categorical variables.
Gallardo Vizcaino, Enrique Carlos.
Support vector classification for geostatistical modeling of categorical variables.
- 118 p.
Source: Masters Abstracts International, Volume: 48-02, page: .
Thesis (M.Sc.)--University of Alberta (Canada), 2009.
Subsurface geological characterization often requires solving a classification problem to obtain a model of facies that is later populated with continuous properties like porosity or permeability. The classification problem, which consists of assigning a single category to any unsampled location based on observed data, is analyzed and solved in this thesis using geostatistical and machine learning tools.
ISBN: 9780494523940Subjects--Topical Terms:
1035566
Engineering, Geological.
Support vector classification for geostatistical modeling of categorical variables.
LDR
:01889nmm 2200265 a 45
001
866897
005
20100802
008
100802s2009 ||||||||||||||||| ||eng d
020
$a
9780494523940
035
$a
(UMI)AAIMR52394
035
$a
AAIMR52394
040
$a
UMI
$c
UMI
100
1
$a
Gallardo Vizcaino, Enrique Carlos.
$3
1035580
245
1 0
$a
Support vector classification for geostatistical modeling of categorical variables.
300
$a
118 p.
500
$a
Source: Masters Abstracts International, Volume: 48-02, page: .
502
$a
Thesis (M.Sc.)--University of Alberta (Canada), 2009.
520
$a
Subsurface geological characterization often requires solving a classification problem to obtain a model of facies that is later populated with continuous properties like porosity or permeability. The classification problem, which consists of assigning a single category to any unsampled location based on observed data, is analyzed and solved in this thesis using geostatistical and machine learning tools.
520
$a
This research proposes an easy-to-implement heuristic technique that uses geostatistical criteria, such as correct classification of the observed data and good reproduction of the global proportions of categories, to obtain from the SVC algorithm a boundary classifier. This boundary is used to generate the facies model.
520
$a
The case studies show that the implementation of the proposed technique is highly automatic. The responses are comparable in terms of prediction accuracy to those obtained by the conventional geostatistical approach. They also show how simple information from SVC allows for an improvement in the response of conventional geostatistical indicator simulation models.
590
$a
School code: 0351.
650
4
$a
Engineering, Geological.
$3
1035566
690
$a
0466
710
2
$a
University of Alberta (Canada).
$3
626651
773
0
$t
Masters Abstracts International
$g
48-02.
790
$a
0351
791
$a
M.Sc.
792
$a
2009
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=MR52394
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9078246
電子資源
11.線上閱覽_V
電子書
EB W9078246
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入