語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Condition numbers for linear program...
~
Cornell University.
FindBook
Google Book
Amazon
博客來
Condition numbers for linear programming.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Condition numbers for linear programming./
作者:
Pena, Javier Francisco.
面頁冊數:
134 p.
附註:
Adviser: James Renegar.
Contained By:
Dissertation Abstracts International59-06B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9837858
ISBN:
9780591915068
Condition numbers for linear programming.
Pena, Javier Francisco.
Condition numbers for linear programming.
- 134 p.
Adviser: James Renegar.
Thesis (Ph.D.)--Cornell University, 1998.
For a feasible conic system of constraints$$\eqalign{Ax&=b\cr x&\ge0,\cr}$
ISBN: 9780591915068Subjects--Topical Terms:
515831
Mathematics.
Condition numbers for linear programming.
LDR
:02532nam 2200325 a 45
001
859508
005
20100713
008
100713s1998 ||||||||||||||||| ||eng d
020
$a
9780591915068
035
$a
(UMI)AAI9837858
035
$a
AAI9837858
040
$a
UMI
$c
UMI
100
1
$a
Pena, Javier Francisco.
$3
1026707
245
1 0
$a
Condition numbers for linear programming.
300
$a
134 p.
500
$a
Adviser: James Renegar.
500
$a
Source: Dissertation Abstracts International, Volume: 59-06, Section: B, page: 2793.
502
$a
Thesis (Ph.D.)--Cornell University, 1998.
520
$a
For a feasible conic system of constraints$$\eqalign{Ax&=b\cr x&\ge0,\cr}$
$t
he condition number is defined in terms of the data perturbations which yield infeasible systems, that is, in terms of "infeasible perturbations."
520
$a
This work conveys various results regarding condition numbers for linear programming. Like traditional condition numbers for linear equations, these numbers aim to capture how changes in the data of the linear program affect properties of the solutions.
520
$a
This thesis addresses three main themes. First, we study some geometric properties of the set of infeasible perturbations of a conic system. It is shown how the geometry of infeasible perturbations for linear equations extends naturally to conic systems.
520
$a
Second, we propose a way to solve the problem of finding a solution for a conic system of constraints by reformulating the problem as an optimization problem to be solved via interior-point methods (IPMs). The approach provides both backward and forward-approximate solutions for a given conic system. The behavior of the IPM bears a close connection with the condition number of the conic system; in particular, the condition numbers of the linear systems that need to be solved when applying the IPM are always bounded in terms of the condition number of the conic system.
520
$a
Third, we combine some key results established in Chapters 2 and 3 to design several schemes to effectively estimate the condition number of a conic system. In addition to theoretical guarantees on the quality of the estimates, we perform numerical experiments to illustrate the behavior of the proposed schemes in practice.
590
$a
School code: 0058.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Operations Research.
$3
626629
690
$a
0405
690
$a
0796
710
2
$a
Cornell University.
$3
530586
773
0
$t
Dissertation Abstracts International
$g
59-06B.
790
$a
0058
790
1 0
$a
Renegar, James,
$e
advisor
791
$a
Ph.D.
792
$a
1998
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9837858
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9074216
電子資源
11.線上閱覽_V
電子書
EB W9074216
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入