語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Differential protein expressions in ...
~
Hong Kong Polytechnic University (Hong Kong).
FindBook
Google Book
Amazon
博客來
Differential protein expressions in the emmetropization of chick retina by a proteomic approach.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Differential protein expressions in the emmetropization of chick retina by a proteomic approach./
作者:
Lam, Chuen.
面頁冊數:
297 p.
附註:
Adviser: Chi-Ho To.
Contained By:
Dissertation Abstracts International68-09B.
標題:
Health Sciences, Ophthalmology. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoeng/servlet/advanced?query=3282307
ISBN:
9780549247111
Differential protein expressions in the emmetropization of chick retina by a proteomic approach.
Lam, Chuen.
Differential protein expressions in the emmetropization of chick retina by a proteomic approach.
- 297 p.
Adviser: Chi-Ho To.
Thesis (Ph.D.)--Hong Kong Polytechnic University (Hong Kong), 2007.
Both in terms of the economic and social health aspects, the impact of myopia epidemic is high and far-reaching. It is believed that myopia development is a multifactorial disease but despite the intensity of myopia research in recent years, the molecular mechanism behind the myopia development is still not known. Global protein profilings and protein identifications have become possible with the new emerging proteomic technology using high resolution two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). Base on the previous ground works using chick as a myopia model, the present study explored if the chick retina is good tissue model for studying the molecular basis of myopia with proteomic technology. It is hypothesized that the study of retinal protein expressions may provide new insight on the downstream pathophysiological cascades in the myopic eye growth.
ISBN: 9780549247111Subjects--Topical Terms:
1019445
Health Sciences, Ophthalmology.
Differential protein expressions in the emmetropization of chick retina by a proteomic approach.
LDR
:05064nam 2200289 a 45
001
858175
005
20100712
008
100712s2007 ||||||||||||||||| ||eng d
020
$a
9780549247111
035
$a
(UMI)AAI3282307
035
$a
AAI3282307
040
$a
UMI
$c
UMI
100
1
$a
Lam, Chuen.
$3
1025207
245
1 0
$a
Differential protein expressions in the emmetropization of chick retina by a proteomic approach.
300
$a
297 p.
500
$a
Adviser: Chi-Ho To.
500
$a
Source: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 5878.
502
$a
Thesis (Ph.D.)--Hong Kong Polytechnic University (Hong Kong), 2007.
520
$a
Both in terms of the economic and social health aspects, the impact of myopia epidemic is high and far-reaching. It is believed that myopia development is a multifactorial disease but despite the intensity of myopia research in recent years, the molecular mechanism behind the myopia development is still not known. Global protein profilings and protein identifications have become possible with the new emerging proteomic technology using high resolution two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). Base on the previous ground works using chick as a myopia model, the present study explored if the chick retina is good tissue model for studying the molecular basis of myopia with proteomic technology. It is hypothesized that the study of retinal protein expressions may provide new insight on the downstream pathophysiological cascades in the myopic eye growth.
520
$a
In the first stage of the study, an animal model of compensated ametropia with chicks wearing goggles for different period was established. The protein extraction and the 2DE procedures from protein separation to protein staining were optimized experimentally. With an optimized proteomic workflow, the first chick retinal proteome database using the Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) was built in the second stage of the study. A total of 155 protein spots in the 2-D gels covering the 3-10 pH range were identified with manual in-gel digestion or using an automated robotic system. To allow for a global view of retinal proteins, the proteins were further classified according to their subcellular locations as well as their molecular functions. Most of the proteins (about 71%) were found to be KAB presented in the cytoplasm. Others resided in the endoplasmic reticulum (7.2%), mitochondrion (7.2%), nucleus (5.6%), Golgi (3.2%), extracellular (1.6%) and plasma membrane (0.8%). There were remaining proteins (2.4%) returning with unknown subcellular location. Based on the gene ontology information, over 80% of the identified proteins fell into three major functional categories which were "catalytic activity" (39%), "binding" (33%) and "transporter activity" (10%). In the third stage, the differential protein expression of normal growing chick eyes at three time-points was studied and the capability of the established workflow in identifying candidate proteins in the early postnatal retinal growth was investigated. Four up-regulated and three down-regulated protein spots were found during the study period in which five of them could be successfully identified and their possible roles in the ocular growth were discussed. At the final stage, differential protein expressions in the emmetropization of chick retina were studied using both pooled and individual retinal samples. Using different experimental conditions with -10D, +10D and occluders for various deprivation periods, two candidate proteins were found to be differentially expressed in 2D gels in response to the treatments. In myopic eyes, Apolipoprotein AI (Apo-AI) was found to be down-regulated while destrin; actin depolymerising factor, ADF (Destrin) was found to be up-regulated in the defocused eye. Since these two proteins have yet to be related in the myopic growth, their functional roles in regulating eye growth through fibroblasts remodelling were explored and generally discussed. The information may provide an important link in the cascade of molecular activity during the myopia development.
520
$a
In addition, the feasibility of applying an emerging novel two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) technique in search for differential protein expressions in chick myopia was explored. Using a reverse fluorescent CyeDye(TM) experimental protocol, a number of differential expressed retinal proteins were detected and identified after the chicks were wearing -10D lens for 7 days. The 2D-DIGE technology has the advantage of overcome some technical bottlenecks in the traditional 2DE and it offers a high level of confidence in comparing protein profiles across multiple gels.
590
$a
School code: 1170.
650
4
$a
Health Sciences, Ophthalmology.
$3
1019445
690
$a
0381
710
2
$a
Hong Kong Polytechnic University (Hong Kong).
$3
1020200
773
0
$t
Dissertation Abstracts International
$g
68-09B.
790
$a
1170
790
1 0
$a
To, Chi-Ho,
$e
advisor
791
$a
Ph.D.
792
$a
2007
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoeng/servlet/advanced?query=3282307
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9073051
電子資源
11.線上閱覽_V
電子書
EB W9073051
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入