語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optimization algorithms in machine l...
~
Das, Debashish.
FindBook
Google Book
Amazon
博客來
Optimization algorithms in machine learning = a meta-heuristics perspective /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optimization algorithms in machine learning/ by Debashish Das, Ali Safaa Sadiq, Seyedali Mirjalili.
其他題名:
a meta-heuristics perspective /
作者:
Das, Debashish.
其他作者:
Sadiq, Ali Safaa.
出版者:
Singapore :Springer Nature Singapore : : 2025.,
面頁冊數:
xvii, 181 p. :ill. (some col.), digital ;24 cm.
內容註:
Challenges and opportunities in Machine Learning using optimization techniques -- Optimization methods: traditional versus stochastic -- Heuristic and meta-heuristic optimization algorithms -- A comprehensive review of evolutionary algorithms and swarm intelligence methods -- Artificial Neural Networks: structure and learning -- A survey of Neural Networks trained by optimization algorithms and meta-heuristics.
Contained By:
Springer Nature eBook
標題:
Machine learning. -
電子資源:
https://doi.org/10.1007/978-981-96-3849-9
ISBN:
9789819638499
Optimization algorithms in machine learning = a meta-heuristics perspective /
Das, Debashish.
Optimization algorithms in machine learning
a meta-heuristics perspective /[electronic resource] :by Debashish Das, Ali Safaa Sadiq, Seyedali Mirjalili. - Singapore :Springer Nature Singapore :2025. - xvii, 181 p. :ill. (some col.), digital ;24 cm. - Engineering optimization: methods and applications,2731-4057. - Engineering optimization: methods and applications..
Challenges and opportunities in Machine Learning using optimization techniques -- Optimization methods: traditional versus stochastic -- Heuristic and meta-heuristic optimization algorithms -- A comprehensive review of evolutionary algorithms and swarm intelligence methods -- Artificial Neural Networks: structure and learning -- A survey of Neural Networks trained by optimization algorithms and meta-heuristics.
This book explores the development of several new learning algorithms that utilize recent optimization techniques and meta-heuristics. It addresses well-known models such as particle swarm optimization, genetic algorithm, ant colony optimization, evolutionary strategy, population-based incremental learning, and grey wolf optimizer for training neural networks. Additionally, the book examines the challenges associated with these processes in detail. This volume will serve as a valuable reference for individuals in both academia and industry.
ISBN: 9789819638499
Standard No.: 10.1007/978-981-96-3849-9doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Optimization algorithms in machine learning = a meta-heuristics perspective /
LDR
:02096nmm a2200337 a 4500
001
2410327
003
DE-He213
005
20250520130224.0
006
m d
007
cr nn 008maaau
008
260204s2025 si s 0 eng d
020
$a
9789819638499
$q
(electronic bk.)
020
$a
9789819638482
$q
(paper)
024
7
$a
10.1007/978-981-96-3849-9
$2
doi
035
$a
978-981-96-3849-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.D229 2025
100
1
$a
Das, Debashish.
$3
3784152
245
1 0
$a
Optimization algorithms in machine learning
$h
[electronic resource] :
$b
a meta-heuristics perspective /
$c
by Debashish Das, Ali Safaa Sadiq, Seyedali Mirjalili.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2025.
300
$a
xvii, 181 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Engineering optimization: methods and applications,
$x
2731-4057
505
0
$a
Challenges and opportunities in Machine Learning using optimization techniques -- Optimization methods: traditional versus stochastic -- Heuristic and meta-heuristic optimization algorithms -- A comprehensive review of evolutionary algorithms and swarm intelligence methods -- Artificial Neural Networks: structure and learning -- A survey of Neural Networks trained by optimization algorithms and meta-heuristics.
520
$a
This book explores the development of several new learning algorithms that utilize recent optimization techniques and meta-heuristics. It addresses well-known models such as particle swarm optimization, genetic algorithm, ant colony optimization, evolutionary strategy, population-based incremental learning, and grey wolf optimizer for training neural networks. Additionally, the book examines the challenges associated with these processes in detail. This volume will serve as a valuable reference for individuals in both academia and industry.
650
0
$a
Machine learning.
$3
533906
650
0
$a
Mathematical optimization.
$3
517763
650
0
$a
Metaheuristics.
$3
2206834
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Optimization.
$3
891104
700
1
$a
Sadiq, Ali Safaa.
$3
3784153
700
1
$a
Mirjalili, Seyedali.
$3
3378331
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Engineering optimization: methods and applications.
$3
3625605
856
4 0
$u
https://doi.org/10.1007/978-981-96-3849-9
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9515825
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入