語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Artificial intelligence and complex ...
~
Tsironis, Giorgos.
FindBook
Google Book
Amazon
博客來
Artificial intelligence and complex dynamical systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Artificial intelligence and complex dynamical systems/ by Giorgos Tsironis.
作者:
Tsironis, Giorgos.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xix, 296 p. :ill. (some col.), digital ;24 cm.
內容註:
Chapter 1. Complex systems and machine learning -- Chapter 2. Regression and Classification -- Chapter 3. Data manipulation techniques -- Chapter 4. Artificial neurons and deep learning -- Chapter 5. Powerful neural network architectures -- Chapter 6. Autoencoders and more -- Chapter 7. The Discrete Nonlinear Schr¨odinger Equation -- Chapter 8. Learning Analytical Solutions -- Chapter 9. The targeted energy transfer model -- Chapter 10. Dynamical embedding with autoencoders -- Chapter 11. Chimeras -- Chapter 12. Branching -- Chapter 13. Discrete breathers -- Chapter 14. Quantum targeted transfer with machine learning -- Chapter 15. Learning quantum systems -- Chapter 16. Action potential propagation in the heart -- Chapter 17. Machine learning cardiology -- Chapter 18. Epidemiology with physics informed machine learning -- Chapter 19. Foundations -- Chapter 20. Computational complexity and the butterfly effect.
Contained By:
Springer Nature eBook
標題:
Artificial intelligence. -
電子資源:
https://doi.org/10.1007/978-3-031-81946-9
ISBN:
9783031819469
Artificial intelligence and complex dynamical systems
Tsironis, Giorgos.
Artificial intelligence and complex dynamical systems
[electronic resource] /by Giorgos Tsironis. - Cham :Springer Nature Switzerland :2025. - xix, 296 p. :ill. (some col.), digital ;24 cm. - Understanding complex systems,1860-0840. - Understanding complex systems..
Chapter 1. Complex systems and machine learning -- Chapter 2. Regression and Classification -- Chapter 3. Data manipulation techniques -- Chapter 4. Artificial neurons and deep learning -- Chapter 5. Powerful neural network architectures -- Chapter 6. Autoencoders and more -- Chapter 7. The Discrete Nonlinear Schr¨odinger Equation -- Chapter 8. Learning Analytical Solutions -- Chapter 9. The targeted energy transfer model -- Chapter 10. Dynamical embedding with autoencoders -- Chapter 11. Chimeras -- Chapter 12. Branching -- Chapter 13. Discrete breathers -- Chapter 14. Quantum targeted transfer with machine learning -- Chapter 15. Learning quantum systems -- Chapter 16. Action potential propagation in the heart -- Chapter 17. Machine learning cardiology -- Chapter 18. Epidemiology with physics informed machine learning -- Chapter 19. Foundations -- Chapter 20. Computational complexity and the butterfly effect.
This book serves as a comprehensive introduction to nonlinear complex systems through the application of machine learning methods. Artificial intelligence (AI) has affected the foundations of scientific discovery, and can therefore lend itself to developing a better understanding of the unpredictable nature of complex dynamical systems and to predict their future evolution. Utilizing Python code, this book teaches and applies machine learning to topics such as chaotic dynamics and time-series analysis, solitons, breathers, chimeras, nonlinear localization, biomolecular dynamics, and wave propagation in the heart. The consistent integration of methods and models allow for readers to develop a necessary intuition on how to handle complexity through AI. This textbook contains a wealth of expository material, code, and example problems to support and organize academic coursework, allowing the technical nature of these areas of study to become highly accessible. Requiring only a basic background in mathematics and coding in Python, this book is an essential text for a wide array of advanced undergraduate or graduate students in the applied sciences interested in complex systems through the lens of machine learning.
ISBN: 9783031819469
Standard No.: 10.1007/978-3-031-81946-9doiSubjects--Topical Terms:
516317
Artificial intelligence.
LC Class. No.: Q335 / .T75 2025
Dewey Class. No.: 006.3
Artificial intelligence and complex dynamical systems
LDR
:03203nmm a2200337 a 4500
001
2409465
003
DE-He213
005
20250314115236.0
006
m d
007
cr nn 008maaau
008
260204s2025 sz s 0 eng d
020
$a
9783031819469
$q
(electronic bk.)
020
$a
9783031819452
$q
(paper)
024
7
$a
10.1007/978-3-031-81946-9
$2
doi
035
$a
978-3-031-81946-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q335
$b
.T75 2025
072
7
$a
GPFC
$2
bicssc
072
7
$a
SCI064000
$2
bisacsh
072
7
$a
GPFC
$2
thema
082
0 4
$a
006.3
$2
23
090
$a
Q335
$b
.T882 2025
100
1
$a
Tsironis, Giorgos.
$3
3782721
245
1 0
$a
Artificial intelligence and complex dynamical systems
$h
[electronic resource] /
$c
by Giorgos Tsironis.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xix, 296 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Understanding complex systems,
$x
1860-0840
505
0
$a
Chapter 1. Complex systems and machine learning -- Chapter 2. Regression and Classification -- Chapter 3. Data manipulation techniques -- Chapter 4. Artificial neurons and deep learning -- Chapter 5. Powerful neural network architectures -- Chapter 6. Autoencoders and more -- Chapter 7. The Discrete Nonlinear Schr¨odinger Equation -- Chapter 8. Learning Analytical Solutions -- Chapter 9. The targeted energy transfer model -- Chapter 10. Dynamical embedding with autoencoders -- Chapter 11. Chimeras -- Chapter 12. Branching -- Chapter 13. Discrete breathers -- Chapter 14. Quantum targeted transfer with machine learning -- Chapter 15. Learning quantum systems -- Chapter 16. Action potential propagation in the heart -- Chapter 17. Machine learning cardiology -- Chapter 18. Epidemiology with physics informed machine learning -- Chapter 19. Foundations -- Chapter 20. Computational complexity and the butterfly effect.
520
$a
This book serves as a comprehensive introduction to nonlinear complex systems through the application of machine learning methods. Artificial intelligence (AI) has affected the foundations of scientific discovery, and can therefore lend itself to developing a better understanding of the unpredictable nature of complex dynamical systems and to predict their future evolution. Utilizing Python code, this book teaches and applies machine learning to topics such as chaotic dynamics and time-series analysis, solitons, breathers, chimeras, nonlinear localization, biomolecular dynamics, and wave propagation in the heart. The consistent integration of methods and models allow for readers to develop a necessary intuition on how to handle complexity through AI. This textbook contains a wealth of expository material, code, and example problems to support and organize academic coursework, allowing the technical nature of these areas of study to become highly accessible. Requiring only a basic background in mathematics and coding in Python, this book is an essential text for a wide array of advanced undergraduate or graduate students in the applied sciences interested in complex systems through the lens of machine learning.
650
0
$a
Artificial intelligence.
$3
516317
650
0
$a
Dynamics.
$3
519830
650
1 4
$a
Complex Systems.
$3
1566441
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Quantum Physics.
$3
893952
650
2 4
$a
Quantum Electrodynamics, Relativistic and Many-body Calculations.
$3
3593588
650
2 4
$a
Biophysics.
$3
518360
650
2 4
$a
Epidemiology.
$3
568544
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Understanding complex systems.
$3
1568162
856
4 0
$u
https://doi.org/10.1007/978-3-031-81946-9
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9514963
電子資源
11.線上閱覽_V
電子書
EB Q335 .T75 2025
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入