語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Materials informatics.. III,. Polyme...
~
Roy, Kunal.
FindBook
Google Book
Amazon
博客來
Materials informatics.. III,. Polymers, solvents and energetic materials
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Materials informatics./ edited by Kunal Roy, Arkaprava Banerjee.
其他題名:
Polymers, solvents and energetic materials
其他作者:
Roy, Kunal.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xv, 371 p. :ill. (some col.), digital ;24 cm.
內容註:
Part 1. Introduction -- Introduction to Machine Learning for Predictive Modeling II -- Introduction to predicting properties of organic materials -- Part 2. Cheminformatic and Machine Learning Models for Polymers -- Machine Learning Applications in Polymer Informatics - An Overview -- Applications of predictive modeling for selected properties of polymers -- Polymer Property Prediction using Machine Learning -- Applications of predictive modeling for polymers -- Part 3. Cheminformatic and Machine Learning Models for Solvents -- Applications of predictive QSPR modeling for deep eutectic solvents -- Applications of predictive modeling for various properties of ionic liquids -- Part 4. Cheminformatic and Machine Learning Models for Energetic Materials -- Improving Safety with Molecular-Scale Computational Approaches for Energetic and Reactive Materials -- Predictive modeling for energetic materials -- Modeling the performance of energetic materials -- Applications of predictive modeling for energetic materials.
Contained By:
Springer Nature eBook
標題:
Materials - Data processing. -
電子資源:
https://doi.org/10.1007/978-3-031-78724-9
ISBN:
9783031787249
Materials informatics.. III,. Polymers, solvents and energetic materials
Materials informatics.
III,Polymers, solvents and energetic materials[electronic resource] /Polymers, solvents and energetic materialsedited by Kunal Roy, Arkaprava Banerjee. - Cham :Springer Nature Switzerland :2025. - xv, 371 p. :ill. (some col.), digital ;24 cm. - Challenges and advances in computational chemistry and physics,v. 412542-4483 ;. - Challenges and advances in computational chemistry and physics ;v. 41..
Part 1. Introduction -- Introduction to Machine Learning for Predictive Modeling II -- Introduction to predicting properties of organic materials -- Part 2. Cheminformatic and Machine Learning Models for Polymers -- Machine Learning Applications in Polymer Informatics - An Overview -- Applications of predictive modeling for selected properties of polymers -- Polymer Property Prediction using Machine Learning -- Applications of predictive modeling for polymers -- Part 3. Cheminformatic and Machine Learning Models for Solvents -- Applications of predictive QSPR modeling for deep eutectic solvents -- Applications of predictive modeling for various properties of ionic liquids -- Part 4. Cheminformatic and Machine Learning Models for Energetic Materials -- Improving Safety with Molecular-Scale Computational Approaches for Energetic and Reactive Materials -- Predictive modeling for energetic materials -- Modeling the performance of energetic materials -- Applications of predictive modeling for energetic materials.
This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structure-property relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance.
ISBN: 9783031787249
Standard No.: 10.1007/978-3-031-78724-9doiSubjects--Topical Terms:
755339
Materials
--Data processing.
LC Class. No.: TA404.23
Dewey Class. No.: 620.110285
Materials informatics.. III,. Polymers, solvents and energetic materials
LDR
:02950nmm a2200349 a 4500
001
2408465
003
DE-He213
005
20250302115230.0
006
m d
007
cr nn 008maaau
008
260204s2025 sz s 0 eng d
020
$a
9783031787249
$q
(electronic bk.)
020
$a
9783031787232
$q
(paper)
024
7
$a
10.1007/978-3-031-78724-9
$2
doi
035
$a
978-3-031-78724-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA404.23
072
7
$a
PNR
$2
bicssc
072
7
$a
SCI013070
$2
bisacsh
072
7
$a
PNRA
$2
thema
082
0 4
$a
620.110285
$2
23
090
$a
TA404.23
$b
.M425 2025
245
0 0
$a
Materials informatics.
$n
III,
$p
Polymers, solvents and energetic materials
$h
[electronic resource] /
$c
edited by Kunal Roy, Arkaprava Banerjee.
246
3 0
$a
Polymers, solvents and energetic materials
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xv, 371 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Challenges and advances in computational chemistry and physics,
$x
2542-4483 ;
$v
v. 41
505
0
$a
Part 1. Introduction -- Introduction to Machine Learning for Predictive Modeling II -- Introduction to predicting properties of organic materials -- Part 2. Cheminformatic and Machine Learning Models for Polymers -- Machine Learning Applications in Polymer Informatics - An Overview -- Applications of predictive modeling for selected properties of polymers -- Polymer Property Prediction using Machine Learning -- Applications of predictive modeling for polymers -- Part 3. Cheminformatic and Machine Learning Models for Solvents -- Applications of predictive QSPR modeling for deep eutectic solvents -- Applications of predictive modeling for various properties of ionic liquids -- Part 4. Cheminformatic and Machine Learning Models for Energetic Materials -- Improving Safety with Molecular-Scale Computational Approaches for Energetic and Reactive Materials -- Predictive modeling for energetic materials -- Modeling the performance of energetic materials -- Applications of predictive modeling for energetic materials.
520
$a
This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structure-property relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance.
650
0
$a
Materials
$x
Data processing.
$3
755339
650
0
$a
Cheminformatics.
$3
605686
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Materials for Energy and Catalysis.
$3
3591870
650
2 4
$a
Computational Materials Science.
$3
3594455
650
2 4
$a
Nanochemistry.
$3
813421
700
1
$a
Roy, Kunal.
$3
2145302
700
1
$a
Banerjee, Arkaprava.
$3
3712442
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Challenges and advances in computational chemistry and physics ;
$v
v. 41.
$3
3780972
856
4 0
$u
https://doi.org/10.1007/978-3-031-78724-9
950
$a
Chemistry and Materials Science (SpringerNature-11644)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9513963
電子資源
11.線上閱覽_V
電子書
EB TA404.23
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入