Foundation models for general medica...
MedAGI (Workshop) (2024 :)

FindBook      Google Book      Amazon      博客來     
  • Foundation models for general medical AI = second International Workshop, MedAGI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024 : proceedings /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Foundation models for general medical AI/ edited by Zhongying Deng ... [et al.].
    其他題名: second International Workshop, MedAGI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024 : proceedings /
    其他題名: MedAGI 2024
    其他作者: Deng, Zhongying.
    團體作者: MedAGI (Workshop)
    出版者: Cham :Springer Nature Switzerland : : 2025.,
    面頁冊數: x, 174 p. :ill. (chiefly color), digital ;24 cm.
    內容註: FastSAM-3DSlicer: A 3D-Slicer Extension for 3D Volumetric Segment Anything Model with Uncertainty Quantification. -- The Importance of Downstream Networks in Digital Pathology Foundation Models. -- Temporal-spatial Adaptation of Promptable SAM Enhance Accuracy and Generalizability of cine CMR Segmentation. -- Navigating Data Scarcity using Foundation Models: A Benchmark of Few-Shot and Zero-Shot Learning Approaches in Medical Imaging. -- AutoEncoder-Based Feature Transformation with Multiple Foundation Models in Computational Pathology. -- OSATTA: One-Shot Automatic Test Time Augmentation for Domain Adaptation. -- Automating MedSAM by Learning Prompts with Weak Few-Shot Supervision. -- SAT-Morph: Unsupervised Deformable Medical Image Registration using Vision Foundation Models with Anatomically Aware Text Prompt. -- Promptable Counterfactual Diffusion Model for Unified Brain Tumor Segmentation and Generation with MRIs. -- D- Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions. -- Optimal Prompting in SAM for Few-Shot and Weakly Supervised Medical Image Segmentation. -- UniCrossAdapter: Multimodal Adaptation of CLIP for Radiology Report Generation. -- TUMSyn: A Text-Guided Generalist model for Customized Multimodal MR Image Synthesis. -- SAMU: An Efficient and Promptable Foundation Model for Medical Image Segmentation. -- Anatomical Embedding-Based Training Method for Medical Image Segmentation Foundation Models. -- Boosting Vision-Language Models for Histopathology Classification: Predict all at once. -- MAGDA: Multi-agent guideline-driven diagnostic assistance.
    Contained By: Springer Nature eBook
    標題: Diagnostic imaging - Congresses. -
    電子資源: https://doi.org/10.1007/978-3-031-73471-7
    ISBN: 9783031734717
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入