語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Determining Alternative and Sustaina...
~
Howland, Amanda D.
FindBook
Google Book
Amazon
博客來
Determining Alternative and Sustainable Management Strategies to Manage the Northern Root-Knot Nematode (Meloidogyne hapla) in Ornamental Plant Production Fields.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Determining Alternative and Sustainable Management Strategies to Manage the Northern Root-Knot Nematode (Meloidogyne hapla) in Ornamental Plant Production Fields./
作者:
Howland, Amanda D.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
120 p.
附註:
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
Contained By:
Dissertations Abstracts International84-11B.
標題:
Entomology. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30486251
ISBN:
9798379520632
Determining Alternative and Sustainable Management Strategies to Manage the Northern Root-Knot Nematode (Meloidogyne hapla) in Ornamental Plant Production Fields.
Howland, Amanda D.
Determining Alternative and Sustainable Management Strategies to Manage the Northern Root-Knot Nematode (Meloidogyne hapla) in Ornamental Plant Production Fields.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 120 p.
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
Thesis (Ph.D.)--Michigan State University, 2023.
The United States floriculture industry was valued at $6.43 billion in 2021, with Michigan being the third largest producer, producing 10% of all ornamental plants in the United States. A major constraint to the production of bare-rooted ornamental plants grown in the field are plant-parasitic nematodes. In Michigan, plant-parasitic nematodes cause millions of dollars in economic loss each year in the state's $104.7 billion agriculture industry. In the northern United States and Canada, the northern root-knot nematode, Meloidogyne hapla, is the most economically important perennial ornamental pathogen. While this is a known major pathogen of daylily production, one of top commodities in ornamental plant production in Michigan, very little is known about its impact in daylily production fields or how to effectively manage this pest. There are only two main management strategies for M. hapla in ornamental plant fields: hot water dips and preplant fumigation, both of which do not control M. hapla the entire production cycle and are therefore only semi-effective. Therefore, research was conducted to determine alternative management strategies to manage M. hapla in daylily production fields, with the goal to prevent yield loss and exportation rejection, and reduce the economic burden of this pest. Three multi-year field trials at a commercial nursery in Zeeland, MI, and several greenhouse experiments at Michigan State University's Plant Greenhouses, East Lansing, MI, were conducted to test several different management options and combination of management options to find the best new management strategies to control M. hapla in ornamental plant fields. The results of these studies demonstrate that there are more effective solutions for M. hapla management in ornamental plant field production compared to current practices and highlight three new management options: Indemnify as a soil drench, Majestene 304, and TerraClean 5.0 have been shown to provide the best M. hapla management in daylily fields, with a reduction in M. hapla population levels by 39.5%, 34.7%, and 28.8%, respectively, compared to the control. Indemnify also reduced the number of galled roots by 80% compared to the control plants, which is considerable and can lead to less fields being quarantined and fewer shipment rejections, significantly increasing the profits of the ornamental plant industry. The Indemnify treatment was additionally shown to have a significant positive effect on plant growth, producing plants with some of the largest overall plant biomass, such as plant heights, shoot weights, crown widths, and, most importantly, yield. Plants where Indemnify was applied as a soil drench always had higher yields (on average 41.3% higher) compared to the control plants and higher yields (on average 40% higher) compared to Telone II fumigation. These experiments also show that the annual application of treatments throughout the production cycle is crucial and provides significantly better M. hapla management compared to current practices, which only focuses on managing nematodes at the beginning of the production cycle. Most importantly, these trials show that there was no impact on plant growth, health, and yield from annual treatment applications. Even though M. hapla is well established in these monoculture, long-term ornamental plant fields, a trial determining possible soil suppression showed that natural suppression may not be occurring in ornamental plant fields in Michigan, but more experiments are needed. Two greenhouse trials tested the damage potential and host status of Hemerocallis spp. to M. hapla and Paratylenchus spp., and determined the threshold level of M. hapla. These greenhouse experiments show that daylily is an excellent host to M. hapla, with a threshold level as low as 13 M. hapla/100 cm3 soil. The data also suggests that even though M. hapla affects plant growth, daylily plants may actually be tolerant to M. hapla; over the length of the daylily growth cycle, the plants became more tolerant of its feeding and grew to similar sizes of the nematode-free plants. Lastly, daylily was shown to not be a host to Paratylenchus spp., and therefore, these nematodes do not need to be included in management decisions. Through the application of the new alternative and more sustainable management strategies described in this dissertation, M. hapla can be effectively and efficiently managed in ornamental plant fields leading to a significant advancement in the floriculture industry in Michigan, the northern United States, and Canada.
ISBN: 9798379520632Subjects--Topical Terms:
615844
Entomology.
Subjects--Index Terms:
Daylily
Determining Alternative and Sustainable Management Strategies to Manage the Northern Root-Knot Nematode (Meloidogyne hapla) in Ornamental Plant Production Fields.
LDR
:05845nmm a2200385 4500
001
2403413
005
20241118085729.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798379520632
035
$a
(MiAaPQ)AAI30486251
035
$a
AAI30486251
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Howland, Amanda D.
$0
(orcid)0000-0002-6686-2143
$3
3773688
245
1 0
$a
Determining Alternative and Sustainable Management Strategies to Manage the Northern Root-Knot Nematode (Meloidogyne hapla) in Ornamental Plant Production Fields.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
120 p.
500
$a
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
500
$a
Advisor: Quintanilla, Marisol.
502
$a
Thesis (Ph.D.)--Michigan State University, 2023.
520
$a
The United States floriculture industry was valued at $6.43 billion in 2021, with Michigan being the third largest producer, producing 10% of all ornamental plants in the United States. A major constraint to the production of bare-rooted ornamental plants grown in the field are plant-parasitic nematodes. In Michigan, plant-parasitic nematodes cause millions of dollars in economic loss each year in the state's $104.7 billion agriculture industry. In the northern United States and Canada, the northern root-knot nematode, Meloidogyne hapla, is the most economically important perennial ornamental pathogen. While this is a known major pathogen of daylily production, one of top commodities in ornamental plant production in Michigan, very little is known about its impact in daylily production fields or how to effectively manage this pest. There are only two main management strategies for M. hapla in ornamental plant fields: hot water dips and preplant fumigation, both of which do not control M. hapla the entire production cycle and are therefore only semi-effective. Therefore, research was conducted to determine alternative management strategies to manage M. hapla in daylily production fields, with the goal to prevent yield loss and exportation rejection, and reduce the economic burden of this pest. Three multi-year field trials at a commercial nursery in Zeeland, MI, and several greenhouse experiments at Michigan State University's Plant Greenhouses, East Lansing, MI, were conducted to test several different management options and combination of management options to find the best new management strategies to control M. hapla in ornamental plant fields. The results of these studies demonstrate that there are more effective solutions for M. hapla management in ornamental plant field production compared to current practices and highlight three new management options: Indemnify as a soil drench, Majestene 304, and TerraClean 5.0 have been shown to provide the best M. hapla management in daylily fields, with a reduction in M. hapla population levels by 39.5%, 34.7%, and 28.8%, respectively, compared to the control. Indemnify also reduced the number of galled roots by 80% compared to the control plants, which is considerable and can lead to less fields being quarantined and fewer shipment rejections, significantly increasing the profits of the ornamental plant industry. The Indemnify treatment was additionally shown to have a significant positive effect on plant growth, producing plants with some of the largest overall plant biomass, such as plant heights, shoot weights, crown widths, and, most importantly, yield. Plants where Indemnify was applied as a soil drench always had higher yields (on average 41.3% higher) compared to the control plants and higher yields (on average 40% higher) compared to Telone II fumigation. These experiments also show that the annual application of treatments throughout the production cycle is crucial and provides significantly better M. hapla management compared to current practices, which only focuses on managing nematodes at the beginning of the production cycle. Most importantly, these trials show that there was no impact on plant growth, health, and yield from annual treatment applications. Even though M. hapla is well established in these monoculture, long-term ornamental plant fields, a trial determining possible soil suppression showed that natural suppression may not be occurring in ornamental plant fields in Michigan, but more experiments are needed. Two greenhouse trials tested the damage potential and host status of Hemerocallis spp. to M. hapla and Paratylenchus spp., and determined the threshold level of M. hapla. These greenhouse experiments show that daylily is an excellent host to M. hapla, with a threshold level as low as 13 M. hapla/100 cm3 soil. The data also suggests that even though M. hapla affects plant growth, daylily plants may actually be tolerant to M. hapla; over the length of the daylily growth cycle, the plants became more tolerant of its feeding and grew to similar sizes of the nematode-free plants. Lastly, daylily was shown to not be a host to Paratylenchus spp., and therefore, these nematodes do not need to be included in management decisions. Through the application of the new alternative and more sustainable management strategies described in this dissertation, M. hapla can be effectively and efficiently managed in ornamental plant fields leading to a significant advancement in the floriculture industry in Michigan, the northern United States, and Canada.
590
$a
School code: 0128.
650
4
$a
Entomology.
$3
615844
650
4
$a
Plant pathology.
$3
3174872
650
4
$a
Horticulture.
$3
555447
653
$a
Daylily
653
$a
Management
653
$a
Northern root-knot nematode
653
$a
Ornamental plants
653
$a
Plant-parasitic nematodes
690
$a
0353
690
$a
0480
690
$a
0471
710
2
$a
Michigan State University.
$b
Entomology - Doctor of Philosophy.
$3
3557479
773
0
$t
Dissertations Abstracts International
$g
84-11B.
790
$a
0128
791
$a
Ph.D.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30486251
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9511733
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入