Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
The Birational Geometry of K-Moduli ...
~
Keller, Jacob.
Linked to FindBook
Google Book
Amazon
博客來
The Birational Geometry of K-Moduli Spaces.
Record Type:
Electronic resources : Monograph/item
Title/Author:
The Birational Geometry of K-Moduli Spaces./
Author:
Keller, Jacob.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2024,
Description:
108 p.
Notes:
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
Contained By:
Dissertations Abstracts International86-01B.
Subject:
Mathematics. -
Online resource:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31299622
ISBN:
9798383200117
The Birational Geometry of K-Moduli Spaces.
Keller, Jacob.
The Birational Geometry of K-Moduli Spaces.
- Ann Arbor : ProQuest Dissertations & Theses, 2024 - 108 p.
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
Thesis (Ph.D.)--University of California, San Diego, 2024.
For C a smooth curve and ξ a line bundle on C, the moduli space UC(2, ξ) of semistable vector bundles of rank two and determinant ξ is a Fano variety. We show that UC(2, ξ) is K-stable for a general curve C ∈ Mg. As a consequence, there are irreducible components of the moduli space of K-stable Fano varieties that are birational to Mg. In particular these components are of general type for g ≥ 22.
ISBN: 9798383200117Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Algebraic curves
The Birational Geometry of K-Moduli Spaces.
LDR
:01565nmm a2200397 4500
001
2401638
005
20241022110543.5
006
m o d
007
cr#unu||||||||
008
251215s2024 ||||||||||||||||| ||eng d
020
$a
9798383200117
035
$a
(MiAaPQ)AAI31299622
035
$a
AAI31299622
035
$a
2401638
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Keller, Jacob.
$3
3771737
245
1 0
$a
The Birational Geometry of K-Moduli Spaces.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2024
300
$a
108 p.
500
$a
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
500
$a
Advisor: McKernan, James.
502
$a
Thesis (Ph.D.)--University of California, San Diego, 2024.
520
$a
For C a smooth curve and ξ a line bundle on C, the moduli space UC(2, ξ) of semistable vector bundles of rank two and determinant ξ is a Fano variety. We show that UC(2, ξ) is K-stable for a general curve C ∈ Mg. As a consequence, there are irreducible components of the moduli space of K-stable Fano varieties that are birational to Mg. In particular these components are of general type for g ≥ 22.
590
$a
School code: 0033.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical mathematics.
$3
3173530
653
$a
Algebraic curves
653
$a
Algebraic geometry
653
$a
Fano varieties
653
$a
K-stability
653
$a
Moduli spaces
653
$a
Vector bundles
690
$a
0405
690
$a
0642
710
2
$a
University of California, San Diego.
$b
Mathematics.
$3
1022364
773
0
$t
Dissertations Abstracts International
$g
86-01B.
790
$a
0033
791
$a
Ph.D.
792
$a
2024
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31299622
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9509958
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login