語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Birational Geometry of Blowups of To...
~
Williamson, Noble.
FindBook
Google Book
Amazon
博客來
Birational Geometry of Blowups of Toric Projective Varieties.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Birational Geometry of Blowups of Toric Projective Varieties./
作者:
Williamson, Noble.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
66 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Contained By:
Dissertations Abstracts International85-01B.
標題:
Mathematics. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30524553
ISBN:
9798379957346
Birational Geometry of Blowups of Toric Projective Varieties.
Williamson, Noble.
Birational Geometry of Blowups of Toric Projective Varieties.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 66 p.
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Thesis (Ph.D.)--University of California, Riverside, 2023.
The Cox ring of an algebraic variety encodes important information on the birational geometry of the variety. When its Cox ring is finitely generated, a variety admits particularly desirable properties in the context of the Minimal Model Program and is called a Mori dream space. For example, all toric varieties are known to be Mori dream spaces so a natural next step in the problem is to study the birational geometry of projective varieties that can be constructed as blowups of toric varieties by studying their pseudoeffective cones and Cox rings. In this dissertation, we present a concrete criterion for the finite generation of the Cox ring of toric projective surfaces of Picard number one blown up at a smooth point using the coordinates of a polytope of the toric variety. We also present a criterion for the irreducibility of an effective divisor of the moduli space of n-pointed stable rational curves.
ISBN: 9798379957346Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Birational geometry
Birational Geometry of Blowups of Toric Projective Varieties.
LDR
:02057nmm a2200385 4500
001
2401524
005
20241022110507.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798379957346
035
$a
(MiAaPQ)AAI30524553
035
$a
AAI30524553
035
$a
2401524
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Williamson, Noble.
$3
3771620
245
1 0
$a
Birational Geometry of Blowups of Toric Projective Varieties.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
66 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
500
$a
Advisor: Gonzalez, Jose.
502
$a
Thesis (Ph.D.)--University of California, Riverside, 2023.
520
$a
The Cox ring of an algebraic variety encodes important information on the birational geometry of the variety. When its Cox ring is finitely generated, a variety admits particularly desirable properties in the context of the Minimal Model Program and is called a Mori dream space. For example, all toric varieties are known to be Mori dream spaces so a natural next step in the problem is to study the birational geometry of projective varieties that can be constructed as blowups of toric varieties by studying their pseudoeffective cones and Cox rings. In this dissertation, we present a concrete criterion for the finite generation of the Cox ring of toric projective surfaces of Picard number one blown up at a smooth point using the coordinates of a polytope of the toric variety. We also present a criterion for the irreducibility of an effective divisor of the moduli space of n-pointed stable rational curves.
590
$a
School code: 0032.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical mathematics.
$3
3173530
653
$a
Birational geometry
653
$a
Divisors
653
$a
Cox ring
653
$a
Pseudoeffective cones
653
$a
Toric varieties
690
$a
0405
690
$a
0642
710
2
$a
University of California, Riverside.
$b
Mathematics.
$3
2101069
773
0
$t
Dissertations Abstracts International
$g
85-01B.
790
$a
0032
791
$a
Ph.D.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30524553
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9509844
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入