語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Potential Modularity of K3 Surfaces ...
~
Gu, Chao.
FindBook
Google Book
Amazon
博客來
Potential Modularity of K3 Surfaces with Large Picard Rank.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Potential Modularity of K3 Surfaces with Large Picard Rank./
作者:
Gu, Chao.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
66 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-02, Section: B.
Contained By:
Dissertations Abstracts International85-02B.
標題:
Mathematics. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30521572
ISBN:
9798380140317
Potential Modularity of K3 Surfaces with Large Picard Rank.
Gu, Chao.
Potential Modularity of K3 Surfaces with Large Picard Rank.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 66 p.
Source: Dissertations Abstracts International, Volume: 85-02, Section: B.
Thesis (Ph.D.)--The University of Chicago, 2023.
The first part of this thesis studied GSp4 -type abelian varieties and the corresponding compatible systems of GSp4 representations. Techniques in [BCGP21] are applied to show that one can prove the potential modularity of these abelian varieties and compatible systems under some conditions that guarantee a sufficient amount of good primes. Then, in the second part, we use the potential modularity theorems to prove that K3 surfaces over totally real field F with Picard rank ≥ 17 are potentially modular.
ISBN: 9798380140317Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Compatible systems
Potential Modularity of K3 Surfaces with Large Picard Rank.
LDR
:01634nmm a2200385 4500
001
2401522
005
20241022110507.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798380140317
035
$a
(MiAaPQ)AAI30521572
035
$a
AAI30521572
035
$a
2401522
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Gu, Chao.
$3
1280543
245
1 0
$a
Potential Modularity of K3 Surfaces with Large Picard Rank.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
66 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-02, Section: B.
500
$a
Advisor: Calegari, Frank.
502
$a
Thesis (Ph.D.)--The University of Chicago, 2023.
520
$a
The first part of this thesis studied GSp4 -type abelian varieties and the corresponding compatible systems of GSp4 representations. Techniques in [BCGP21] are applied to show that one can prove the potential modularity of these abelian varieties and compatible systems under some conditions that guarantee a sufficient amount of good primes. Then, in the second part, we use the potential modularity theorems to prove that K3 surfaces over totally real field F with Picard rank ≥ 17 are potentially modular.
590
$a
School code: 0330.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical mathematics.
$3
3173530
653
$a
Compatible systems
653
$a
GSp(4)
653
$a
K3 surface
653
$a
Potential modularity
653
$a
Picard rank
690
$a
0405
690
$a
0642
710
2
$a
The University of Chicago.
$b
Mathematics.
$3
2049825
773
0
$t
Dissertations Abstracts International
$g
85-02B.
790
$a
0330
791
$a
Ph.D.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30521572
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9509842
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入