語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bayesian Machine Learning Algorithms...
~
Cornell University., Civil and Environmental Engineering.
FindBook
Google Book
Amazon
博客來
Bayesian Machine Learning Algorithms for Uncertainty Quantification, Optimization, and Equation Discoveries in Engineering Physics = = Algorithmes de machine learning bayesiens pour la quantification d'incertitude, l'optimisation et la decouverte d'equations en physique et genie mecanique.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Bayesian Machine Learning Algorithms for Uncertainty Quantification, Optimization, and Equation Discoveries in Engineering Physics =/
其他題名:
Algorithmes de machine learning bayesiens pour la quantification d'incertitude, l'optimisation et la decouverte d'equations en physique et genie mecanique.
作者:
Bonneville, Christophe.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
180 p.
附註:
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
Contained By:
Dissertations Abstracts International84-12B.
標題:
Computational physics. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30425214
ISBN:
9798379711559
Bayesian Machine Learning Algorithms for Uncertainty Quantification, Optimization, and Equation Discoveries in Engineering Physics = = Algorithmes de machine learning bayesiens pour la quantification d'incertitude, l'optimisation et la decouverte d'equations en physique et genie mecanique.
Bonneville, Christophe.
Bayesian Machine Learning Algorithms for Uncertainty Quantification, Optimization, and Equation Discoveries in Engineering Physics =
Algorithmes de machine learning bayesiens pour la quantification d'incertitude, l'optimisation et la decouverte d'equations en physique et genie mecanique. - Ann Arbor : ProQuest Dissertations & Theses, 2023 - 180 p.
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
Thesis (Ph.D.)--Cornell University, 2023.
.
Bayesian machine learning methods are capable of making predictions with well-quantified uncertainty, and tend to be inherently more robust to noisy data. This makes such methods particularly interesting in engineering and scientific problems that require the use of interpretable machine learning algorithms, but where the available data is sparse and noisy. In this thesis, we explore and demonstrate the usefulness of Bayesian machine learning algorithms in several categories of computational engineering problems. First, we present two Gaussian process-based algorithms for failure prediction of structural components. Second, we show how Bayesian optimization can be applied to efficiently optimize engineering designs that require to be validated by time consuming forward simulations, such as fluid-structure interaction simulations. Third, we demonstrate how Bayesian neural networks can be used for scientific discovery, and present a method to discover unknown partial differential equations from sparse data. Finally, we present a Gaussian process-based reduced-order-model capable of efficiently collecting training data, with application to fluid dynamics simulations.
ISBN: 9798379711559Subjects--Topical Terms:
3343998
Computational physics.
Subjects--Index Terms:
Bayesian methods
Bayesian Machine Learning Algorithms for Uncertainty Quantification, Optimization, and Equation Discoveries in Engineering Physics = = Algorithmes de machine learning bayesiens pour la quantification d'incertitude, l'optimisation et la decouverte d'equations en physique et genie mecanique.
LDR
:04100nmm a2200421 4500
001
2398506
005
20240812064654.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798379711559
035
$a
(MiAaPQ)AAI30425214
035
$a
AAI30425214
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Bonneville, Christophe.
$0
(orcid)0000-0003-4150-4697
$3
3768418
245
1 0
$a
Bayesian Machine Learning Algorithms for Uncertainty Quantification, Optimization, and Equation Discoveries in Engineering Physics =
$b
Algorithmes de machine learning bayesiens pour la quantification d'incertitude, l'optimisation et la decouverte d'equations en physique et genie mecanique.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
180 p.
500
$a
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
500
$a
Advisor: Earls, Christopher.
502
$a
Thesis (Ph.D.)--Cornell University, 2023.
506
$a
.
520
$a
Bayesian machine learning methods are capable of making predictions with well-quantified uncertainty, and tend to be inherently more robust to noisy data. This makes such methods particularly interesting in engineering and scientific problems that require the use of interpretable machine learning algorithms, but where the available data is sparse and noisy. In this thesis, we explore and demonstrate the usefulness of Bayesian machine learning algorithms in several categories of computational engineering problems. First, we present two Gaussian process-based algorithms for failure prediction of structural components. Second, we show how Bayesian optimization can be applied to efficiently optimize engineering designs that require to be validated by time consuming forward simulations, such as fluid-structure interaction simulations. Third, we demonstrate how Bayesian neural networks can be used for scientific discovery, and present a method to discover unknown partial differential equations from sparse data. Finally, we present a Gaussian process-based reduced-order-model capable of efficiently collecting training data, with application to fluid dynamics simulations.
520
$a
Les methodes de machine learning (apprentissage automatique) bayesiennes sont capables de faire des predictions avec une incertitude bien quantifiee et ont tendance a etre intrinsequement plus robustes aux donnees corrompues. Cela rend ces methodes particulierement interessantes pour les problemes scientifiques et d'ingenierie qui necessitent l'utilisation d'algorithmes d'apprentissage automatique interpretables, mais dont les donnees disponibles sont rares et corrompues. Dans cette these, nous explorons et demontrons l'utilite des algorithmes d'apprentissage automatique bayesiens dans plusieurs categories de problemes d'ingenierie numerique. Tout d'abord, nous presentons deux algorithmes bases sur des processus gaussiens pour predire la defaillance de composants structuraux. Deuxiemement, nous montrons comment l'optimisation bayesienne peut etre utilisee pour optimiser efficacement des designs qui necessitent d'etre validees par des simulations couteuses, telles que les simulations d'interaction fluide-structure. Troisiemement, nous demontrons comment des reseaux de neurones bayesiens peuvent etre utilises pour la decouverte scientifique et presentons une methode pour decouvrir des equations aux derivees partielles inconnues a partir de donnees limitees. Enfin, nous presentons un modele d'ordre reduit base sur des processus gaussiens capable de collecter efficacement des donnees d'entrainement, avec une application aux simulations de dynamique des fluides.
590
$a
School code: 0058.
650
4
$a
Computational physics.
$3
3343998
650
4
$a
Mechanical engineering.
$3
649730
650
4
$a
Applied mathematics.
$3
2122814
653
$a
Bayesian methods
653
$a
Gaussian process
653
$a
Machine learning
653
$a
Numerical simulation
653
$a
Partial differential equations
690
$a
0216
690
$a
0800
690
$a
0548
690
$a
0364
710
2
$a
Cornell University.
$b
Civil and Environmental Engineering.
$3
2093169
773
0
$t
Dissertations Abstracts International
$g
84-12B.
790
$a
0058
791
$a
Ph.D.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30425214
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9506826
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入