語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Transferable Generative Models.
~
Jain, Ajay.
FindBook
Google Book
Amazon
博客來
Transferable Generative Models.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Transferable Generative Models./
作者:
Jain, Ajay.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
134 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-06, Section: B.
Contained By:
Dissertations Abstracts International85-06B.
標題:
Computer science. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30493292
ISBN:
9798380877213
Transferable Generative Models.
Jain, Ajay.
Transferable Generative Models.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 134 p.
Source: Dissertations Abstracts International, Volume: 85-06, Section: B.
Thesis (Ph.D.)--University of California, Berkeley, 2023.
We present progress in developing stable, scalable and transferable generative models for visual data. We first learn expressive image priors using autoregressive models which generate high-quality and diverse images. We then explore transfer learning to generalize visual representations models to new data modalities with limited available data. We propose two methods to generate high quality 3D graphics from sparse input images or natural language descriptions by distilling knowledge from pretrained discriminative vision models. We briefly summarize our work on improving generation quality with a Denoising Diffusion Probabilistic Model, and demonstrate how to transfer it to new modalities including high-quality text-to-3D synthesis using Score Distillation Sampling. Finally, we generate 2D vector graphics from text by optimizing a vector graphics renderer with knowledge distilled from a pretrained text-to-image diffusion model, without vector graphics data. Our models enable high-quality generation across many modalities, and continue to be broadly applied in subsequent work.
ISBN: 9798380877213Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
3D graphics
Transferable Generative Models.
LDR
:02179nmm a2200373 4500
001
2398145
005
20240812064350.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798380877213
035
$a
(MiAaPQ)AAI30493292
035
$a
AAI30493292
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Jain, Ajay.
$3
3768054
245
1 0
$a
Transferable Generative Models.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
134 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-06, Section: B.
500
$a
Advisor: Abbeel, Pieter.
502
$a
Thesis (Ph.D.)--University of California, Berkeley, 2023.
520
$a
We present progress in developing stable, scalable and transferable generative models for visual data. We first learn expressive image priors using autoregressive models which generate high-quality and diverse images. We then explore transfer learning to generalize visual representations models to new data modalities with limited available data. We propose two methods to generate high quality 3D graphics from sparse input images or natural language descriptions by distilling knowledge from pretrained discriminative vision models. We briefly summarize our work on improving generation quality with a Denoising Diffusion Probabilistic Model, and demonstrate how to transfer it to new modalities including high-quality text-to-3D synthesis using Score Distillation Sampling. Finally, we generate 2D vector graphics from text by optimizing a vector graphics renderer with knowledge distilled from a pretrained text-to-image diffusion model, without vector graphics data. Our models enable high-quality generation across many modalities, and continue to be broadly applied in subsequent work.
590
$a
School code: 0028.
650
4
$a
Computer science.
$3
523869
650
4
$a
Computer engineering.
$3
621879
650
4
$a
Information technology.
$3
532993
653
$a
3D graphics
653
$a
Deep learning
653
$a
Text-to-image diffusion model
653
$a
Generative AI
690
$a
0984
690
$a
0489
690
$a
0464
710
2
$a
University of California, Berkeley.
$b
Electrical Engineering & Computer Sciences.
$3
1671057
773
0
$t
Dissertations Abstracts International
$g
85-06B.
790
$a
0028
791
$a
Ph.D.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30493292
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9506465
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入