語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Inference in High Dimensional Regres...
~
Rakshit, Prabrisha.
FindBook
Google Book
Amazon
博客來
Inference in High Dimensional Regression.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Inference in High Dimensional Regression./
作者:
Rakshit, Prabrisha.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
153 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-05, Section: A.
Contained By:
Dissertations Abstracts International85-05A.
標題:
Statistics. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30522565
ISBN:
9798380845694
Inference in High Dimensional Regression.
Rakshit, Prabrisha.
Inference in High Dimensional Regression.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 153 p.
Source: Dissertations Abstracts International, Volume: 85-05, Section: A.
Thesis (Ph.D.)--Rutgers The State University of New Jersey, School of Graduate Studies, 2023.
This item must not be sold to any third party vendors.
This thesis proposes a novel statistical inference framework for high-dimensional generalized linear models (GLMs). The first project focuses on labeling patients in electronic health records as case or control using high-dimensional sparse logistic regression models. A lack of valid statistical inference methods for the case probability poses a major hurdle. To address this, the project proposes a novel bias-corrected estimator for the case probability and establishes its asymptotic normality. The second project considers high-dimensional sparse Poisson regression models and proposes bias-corrected estimators for linear and quadratic transformations of the high-dimensional regression vector. We apply the devised methodology to the high-dimensional mediation analysis, with a particular application of testing the interaction between the treatment variable and high-dimensional mediators. The third project presents the R package SIHR on statistical inferences in high-dimensional generalized linear models for continuous and binary outcomes. The package includes confidence interval construction and hypothesis testing for linear and quadratic functionals and demonstrates practical applications in both numerical examples and real data settings.
ISBN: 9798380845694Subjects--Topical Terms:
517247
Statistics.
Subjects--Index Terms:
Generalized linear models
Inference in High Dimensional Regression.
LDR
:02492nmm a2200385 4500
001
2396860
005
20240618081803.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798380845694
035
$a
(MiAaPQ)AAI30522565
035
$a
AAI30522565
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Rakshit, Prabrisha.
$3
3766614
245
1 0
$a
Inference in High Dimensional Regression.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
153 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-05, Section: A.
500
$a
Advisor: Guo, Zijian.
502
$a
Thesis (Ph.D.)--Rutgers The State University of New Jersey, School of Graduate Studies, 2023.
506
$a
This item must not be sold to any third party vendors.
520
$a
This thesis proposes a novel statistical inference framework for high-dimensional generalized linear models (GLMs). The first project focuses on labeling patients in electronic health records as case or control using high-dimensional sparse logistic regression models. A lack of valid statistical inference methods for the case probability poses a major hurdle. To address this, the project proposes a novel bias-corrected estimator for the case probability and establishes its asymptotic normality. The second project considers high-dimensional sparse Poisson regression models and proposes bias-corrected estimators for linear and quadratic transformations of the high-dimensional regression vector. We apply the devised methodology to the high-dimensional mediation analysis, with a particular application of testing the interaction between the treatment variable and high-dimensional mediators. The third project presents the R package SIHR on statistical inferences in high-dimensional generalized linear models for continuous and binary outcomes. The package includes confidence interval construction and hypothesis testing for linear and quadratic functionals and demonstrates practical applications in both numerical examples and real data settings.
590
$a
School code: 0190.
650
4
$a
Statistics.
$3
517247
650
4
$a
Biostatistics.
$3
1002712
653
$a
Generalized linear models
653
$a
High-dimensional regression
653
$a
Bias-corrected estimator
653
$a
Quadratic transformations
690
$a
0463
690
$a
0501
690
$a
0308
710
2
$a
Rutgers The State University of New Jersey, School of Graduate Studies.
$b
Statistics and Biostatistics.
$3
3545045
773
0
$t
Dissertations Abstracts International
$g
85-05A.
790
$a
0190
791
$a
Ph.D.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30522565
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9505180
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入