Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Minimum Turn Hamiltonian Paths on Re...
~
Golder, Kendall,
Linked to FindBook
Google Book
Amazon
博客來
Minimum Turn Hamiltonian Paths on Rectangular Grids /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Minimum Turn Hamiltonian Paths on Rectangular Grids // Kendall Golder.
Author:
Golder, Kendall,
Description:
1 electronic resource (112 pages)
Notes:
Source: Masters Abstracts International, Volume: 83-04.
Contained By:
Masters Abstracts International83-04.
Subject:
Mathematics. -
Online resource:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28769096
ISBN:
9798460437290
Minimum Turn Hamiltonian Paths on Rectangular Grids /
Golder, Kendall,
Minimum Turn Hamiltonian Paths on Rectangular Grids /
Kendall Golder. - 1 electronic resource (112 pages)
Source: Masters Abstracts International, Volume: 83-04.
We solve the problem of finding Hamiltonian paths on rectangular grids that have the minimum possible number of turns. It is found that the minimum number of turns possible for a Hamiltonian path on an m x n rectangular grid is 2M-2, where M is the minimum of m and n. A method for enumerating minimum turn Hamiltonian paths is presented and a computer algorithm is used to count how many minimum turn Hamiltonian paths exist for M = 2,3,...,13. Additionally, a computer algorithm is used to list some minimum turn Hamiltonian paths. Lastly, a connection to stamp folding and meanders is found.
English
ISBN: 9798460437290Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Grid
Minimum Turn Hamiltonian Paths on Rectangular Grids /
LDR
:02006nmm a22004693i 4500
001
2396124
005
20250522083153.5
006
m o d
007
cr|nu||||||||
008
251215s2021 miu||||||m |||||||eng d
020
$a
9798460437290
035
$a
(MiAaPQD)AAI28769096
035
$a
AAI28769096
040
$a
MiAaPQD
$b
eng
$c
MiAaPQD
$e
rda
100
1
$a
Golder, Kendall,
$e
author.
$3
3765692
245
1 0
$a
Minimum Turn Hamiltonian Paths on Rectangular Grids /
$c
Kendall Golder.
264
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
1 electronic resource (112 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 83-04.
500
$a
Advisors: Hollenbeck, Brian Committee members: Wiley, Chad; Mahoney, Thomas.
502
$b
M.S.
$c
Emporia State University
$d
2021.
520
$a
We solve the problem of finding Hamiltonian paths on rectangular grids that have the minimum possible number of turns. It is found that the minimum number of turns possible for a Hamiltonian path on an m x n rectangular grid is 2M-2, where M is the minimum of m and n. A method for enumerating minimum turn Hamiltonian paths is presented and a computer algorithm is used to count how many minimum turn Hamiltonian paths exist for M = 2,3,...,13. Additionally, a computer algorithm is used to list some minimum turn Hamiltonian paths. Lastly, a connection to stamp folding and meanders is found.
546
$a
English
590
$a
School code: 1340
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical mathematics.
$3
3173530
650
4
$a
Computer science.
$3
523869
653
$a
Grid
653
$a
Hamiltonian
653
$a
Meanders
653
$a
Path
653
$a
Stamp folding
653
$a
Turn
653
$a
Permutation
653
$a
Lattice
690
$a
0405
690
$a
0642
690
$a
0984
710
2
$a
Emporia State University.
$b
Mathematics.
$e
degree granting institution.
$3
3765693
720
1
$a
Hollenbeck, Brian
$e
degree supervisor.
773
0
$t
Masters Abstracts International
$g
83-04.
790
$a
1340
791
$a
M.S.
792
$a
2021
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28769096
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9504444
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login