語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advanced techniques in optimization ...
~
Benfenati, Alessandro.
FindBook
Google Book
Amazon
博客來
Advanced techniques in optimization for machine learning and imaging
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Advanced techniques in optimization for machine learning and imaging/ edited by Alessandro Benfenati ... [et al.].
其他作者:
Benfenati, Alessandro.
出版者:
Singapore :Springer Nature Singapore : : 2024.,
面頁冊數:
x, 165 p. :ill. (some col.), digital ;24 cm.
內容註:
1.STEMPO dynamic Xray tomography phantom -- 2.On a fixed point continuation method for a convex optimization problem -- 3.Majoration Minimization for Sparse SVMs -- 4.Bilevel learning of regularization models and their discretization for image deblurring and super resolution -- 5.Non Log Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms -- 6.On the inexact proximal Gauss-Newton methods for regularized nonlinear least squares problems.
Contained By:
Springer Nature eBook
標題:
Mathematical optimization. -
電子資源:
https://doi.org/10.1007/978-981-97-6769-4
ISBN:
9789819767694
Advanced techniques in optimization for machine learning and imaging
Advanced techniques in optimization for machine learning and imaging
[electronic resource] /edited by Alessandro Benfenati ... [et al.]. - Singapore :Springer Nature Singapore :2024. - x, 165 p. :ill. (some col.), digital ;24 cm. - Springer INdAM series,v. 612281-5198 ;. - Springer INdAM series ;v. 61..
1.STEMPO dynamic Xray tomography phantom -- 2.On a fixed point continuation method for a convex optimization problem -- 3.Majoration Minimization for Sparse SVMs -- 4.Bilevel learning of regularization models and their discretization for image deblurring and super resolution -- 5.Non Log Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms -- 6.On the inexact proximal Gauss-Newton methods for regularized nonlinear least squares problems.
In recent years, non-linear optimization has had a crucial role in the development of modern techniques at the interface of machine learning and imaging. The present book is a collection of recent contributions in the field of optimization, either revisiting consolidated ideas to provide formal theoretical guarantees or providing comparative numerical studies for challenging inverse problems in imaging. The work of these papers originated in the INdAM Workshop "Advanced Techniques in Optimization for Machine learning and Imaging" held in Roma, Italy, on June 20-24, 2022. The covered topics include non-smooth optimisation techniques for model-driven variational regularization, fixed-point continuation algorithms and their theoretical analysis for selection strategies of the regularization parameter for linear inverse problems in imaging, different perspectives on Support Vector Machines trained via Majorization-Minimization methods, generalization of Bayesian statistical frameworks to imaging problems, and creation of benchmark datasets for testing new methods and algorithms.
ISBN: 9789819767694
Standard No.: 10.1007/978-981-97-6769-4doiSubjects--Topical Terms:
517763
Mathematical optimization.
LC Class. No.: QA402.5
Dewey Class. No.: 519.6
Advanced techniques in optimization for machine learning and imaging
LDR
:02633nmm a2200337 a 4500
001
2375317
003
DE-He213
005
20241002130240.0
006
m d
007
cr nn 008maaau
008
241231s2024 si s 0 eng d
020
$a
9789819767694
$q
(electronic bk.)
020
$a
9789819767687
$q
(paper)
024
7
$a
10.1007/978-981-97-6769-4
$2
doi
035
$a
978-981-97-6769-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
UYQM
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
UYQM
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.A244 2024
245
0 0
$a
Advanced techniques in optimization for machine learning and imaging
$h
[electronic resource] /
$c
edited by Alessandro Benfenati ... [et al.].
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2024.
300
$a
x, 165 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer INdAM series,
$x
2281-5198 ;
$v
v. 61
505
0
$a
1.STEMPO dynamic Xray tomography phantom -- 2.On a fixed point continuation method for a convex optimization problem -- 3.Majoration Minimization for Sparse SVMs -- 4.Bilevel learning of regularization models and their discretization for image deblurring and super resolution -- 5.Non Log Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms -- 6.On the inexact proximal Gauss-Newton methods for regularized nonlinear least squares problems.
520
$a
In recent years, non-linear optimization has had a crucial role in the development of modern techniques at the interface of machine learning and imaging. The present book is a collection of recent contributions in the field of optimization, either revisiting consolidated ideas to provide formal theoretical guarantees or providing comparative numerical studies for challenging inverse problems in imaging. The work of these papers originated in the INdAM Workshop "Advanced Techniques in Optimization for Machine learning and Imaging" held in Roma, Italy, on June 20-24, 2022. The covered topics include non-smooth optimisation techniques for model-driven variational regularization, fixed-point continuation algorithms and their theoretical analysis for selection strategies of the regularization parameter for linear inverse problems in imaging, different perspectives on Support Vector Machines trained via Majorization-Minimization methods, generalization of Bayesian statistical frameworks to imaging problems, and creation of benchmark datasets for testing new methods and algorithms.
650
0
$a
Mathematical optimization.
$3
517763
650
0
$a
Nonlinear theories.
$3
524352
650
0
$a
Machine learning
$x
Mathematics.
$3
3442737
650
0
$a
Image processing
$x
Digital techniques
$x
Mathematics.
$3
615087
650
1 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Optimization.
$3
891104
650
2 4
$a
Analysis.
$3
891106
700
1
$a
Benfenati, Alessandro.
$3
3724759
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer INdAM series ;
$v
v. 61.
$3
3724760
856
4 0
$u
https://doi.org/10.1007/978-981-97-6769-4
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9495766
電子資源
11.線上閱覽_V
電子書
EB QA402.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入