Explainable artificial intelligence ...
World Conference on Explainable Artificial Intelligence (2024 :)

FindBook      Google Book      Amazon      博客來     
  • Explainable artificial intelligence = second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024 : proceedings.. Part II /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Explainable artificial intelligence/ edited by Luca Longo, Sebastian Lapuschkin, Christin Seifert.
    其他題名: second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024 : proceedings.
    其他題名: xAI 2024
    其他作者: Longo, Luca.
    團體作者: World Conference on Explainable Artificial Intelligence
    出版者: Cham :Springer Nature Switzerland : : 2024.,
    面頁冊數: xvii, 514 p. :ill. (some col.), digital ;24 cm.
    內容註: XAI for graphs and Computer vision. -- Model-Agnostic Knowledge Graph Embedding Explanations for Recommender Systems. -- Graph-Based Interface for Explanations by Examples in Recommender Systems: A User Study. -- Explainable AI for Mixed Data Clustering. -- Explaining graph classifiers by unsupervised node relevance attribution. -- Explaining Clustering of Ecological Momentary Assessment through Temporal and Feature-based Attention. -- Graph Edits for Counterfactual Explanations: A comparative study. -- Model guidance via explanations turns image classifiers into segmentation models. -- Understanding the Dependence of Perception Model Competency on Regions in an Image. -- A Guided Tour of Post-hoc XAI Techniques in Image Segmentation. -- Explainable Emotion Decoding for Human and Computer Vision. -- Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification. -- Logic, reasoning, and rule-based explainable AI. -- Template Decision Diagrams for Meta Control and Explainability. -- A Logic of Weighted Reasons for Explainable Inference in AI. -- On Explaining and Reasoning about Fiber Optical Link Problems. -- Construction of artificial most representative trees by minimizing tree-based distance measures. -- Decision Predicate Graphs: Enhancing Interpretability in Tree Ensembles. -- Model-agnostic and statistical methods for eXplainable AI. -- Observation-specific explanations through scattered data approximation. -- CNN-based explanation ensembling for dataset, representation and explanations evaluation. -- Local List-wise Explanations of LambdaMART. -- Sparseness-Optimized Feature Importance. -- Stabilizing Estimates of Shapley Values with Control Variates. -- A Guide to Feature Importance Methods for Scientific Inference. -- Interpretable Machine Learning for TabPFN. -- Statistics and explainability: a fruitful alliance. -- How Much Can Stratification Improve the Approximation of Shapley Values?.
    Contained By: Springer Nature eBook
    標題: Artificial intelligence - Congresses. -
    電子資源: https://doi.org/10.1007/978-3-031-63797-1
    ISBN: 9783031637971
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入