Explainable artificial intelligence ...
World Conference on Explainable Artificial Intelligence (2024 :)

FindBook      Google Book      Amazon      博客來     
  • Explainable artificial intelligence = second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024 : proceedings.. Part I /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Explainable artificial intelligence/ edited by Luca Longo, Sebastian Lapuschkin, Christin Seifert.
    其他題名: second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024 : proceedings.
    其他題名: xAI 2024
    其他作者: Longo, Luca.
    團體作者: World Conference on Explainable Artificial Intelligence
    出版者: Cham :Springer Nature Switzerland : : 2024.,
    面頁冊數: xvii, 494 p. :ill. (some col.), digital ;24 cm.
    內容註: Intrinsically interpretable XAI and concept-based global explainability. -- Seeking Interpretability and Explainability in Binary Activated Neural Networks. -- Prototype-based Interpretable Breast Cancer Prediction Models: Analysis and Challenges. -- Evaluating the Explainability of Attributes and Prototypes for a Medical Classification Model. -- Revisiting FunnyBirds evaluation framework for prototypical parts networks. -- CoProNN: Concept-based Prototypical Nearest Neighbors for Explaining Vision Models. -- Unveiling the Anatomy of Adversarial Attacks: Concept-based XAI Dissection of CNNs. -- AutoCL: AutoML for Concept Learning. -- Locally Testing Model Detections for Semantic Global Concepts. -- Knowledge graphs for empirical concept retrieval. -- Global Concept Explanations for Graphs by Contrastive Learning. -- Generative explainable AI and verifiability. -- Augmenting XAI with LLMs: A Case Study in Banking Marketing Recommendation. -- Generative Inpainting for Shapley-Value-Based Anomaly Explanation. -- Challenges and Opportunities in Text Generation Explainability. -- NoNE Found: Explaining the Output of Sequence-to-Sequence Models when No Named Entity is Recognized. -- Notion, metrics, evaluation and benchmarking for XAI. -- Benchmarking Trust: A Metric for Trustworthy Machine Learning. -- Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI. -- Conditional Calibrated Explanations: Finding a Path between Bias and Uncertainty. -- Meta-evaluating stability measures: MAX-Sensitivity & AVG-Senstivity. -- Xpression: A unifying metric to evaluate Explainability and Compression of AI models. -- Evaluating Neighbor Explainability for Graph Neural Networks. -- A Fresh Look at Sanity Checks for Saliency Maps. -- Explainability, Quantified: Benchmarking XAI techniques. -- BEExAI: Benchmark to Evaluate Explainable AI. -- Associative Interpretability of Hidden Semantics with Contrastiveness Operators in Face Classification tasks.
    Contained By: Springer Nature eBook
    標題: Artificial intelligence - Congresses. -
    電子資源: https://doi.org/10.1007/978-3-031-63787-2
    ISBN: 9783031637872
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入