語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Explainable artificial intelligence ...
~
World Conference on Explainable Artificial Intelligence (2024 :)
FindBook
Google Book
Amazon
博客來
Explainable artificial intelligence = second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024 : proceedings.. Part I /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Explainable artificial intelligence/ edited by Luca Longo, Sebastian Lapuschkin, Christin Seifert.
其他題名:
second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024 : proceedings.
其他題名:
xAI 2024
其他作者:
Longo, Luca.
團體作者:
World Conference on Explainable Artificial Intelligence
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
xvii, 494 p. :ill. (some col.), digital ;24 cm.
內容註:
Intrinsically interpretable XAI and concept-based global explainability. -- Seeking Interpretability and Explainability in Binary Activated Neural Networks. -- Prototype-based Interpretable Breast Cancer Prediction Models: Analysis and Challenges. -- Evaluating the Explainability of Attributes and Prototypes for a Medical Classification Model. -- Revisiting FunnyBirds evaluation framework for prototypical parts networks. -- CoProNN: Concept-based Prototypical Nearest Neighbors for Explaining Vision Models. -- Unveiling the Anatomy of Adversarial Attacks: Concept-based XAI Dissection of CNNs. -- AutoCL: AutoML for Concept Learning. -- Locally Testing Model Detections for Semantic Global Concepts. -- Knowledge graphs for empirical concept retrieval. -- Global Concept Explanations for Graphs by Contrastive Learning. -- Generative explainable AI and verifiability. -- Augmenting XAI with LLMs: A Case Study in Banking Marketing Recommendation. -- Generative Inpainting for Shapley-Value-Based Anomaly Explanation. -- Challenges and Opportunities in Text Generation Explainability. -- NoNE Found: Explaining the Output of Sequence-to-Sequence Models when No Named Entity is Recognized. -- Notion, metrics, evaluation and benchmarking for XAI. -- Benchmarking Trust: A Metric for Trustworthy Machine Learning. -- Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI. -- Conditional Calibrated Explanations: Finding a Path between Bias and Uncertainty. -- Meta-evaluating stability measures: MAX-Sensitivity & AVG-Senstivity. -- Xpression: A unifying metric to evaluate Explainability and Compression of AI models. -- Evaluating Neighbor Explainability for Graph Neural Networks. -- A Fresh Look at Sanity Checks for Saliency Maps. -- Explainability, Quantified: Benchmarking XAI techniques. -- BEExAI: Benchmark to Evaluate Explainable AI. -- Associative Interpretability of Hidden Semantics with Contrastiveness Operators in Face Classification tasks.
Contained By:
Springer Nature eBook
標題:
Artificial intelligence - Congresses. -
電子資源:
https://doi.org/10.1007/978-3-031-63787-2
ISBN:
9783031637872
Explainable artificial intelligence = second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024 : proceedings.. Part I /
Explainable artificial intelligence
second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024 : proceedings.Part I /[electronic resource] :xAI 2024edited by Luca Longo, Sebastian Lapuschkin, Christin Seifert. - Cham :Springer Nature Switzerland :2024. - xvii, 494 p. :ill. (some col.), digital ;24 cm. - Communications in computer and information science,21531865-0937 ;. - Communications in computer and information science ;2153..
Intrinsically interpretable XAI and concept-based global explainability. -- Seeking Interpretability and Explainability in Binary Activated Neural Networks. -- Prototype-based Interpretable Breast Cancer Prediction Models: Analysis and Challenges. -- Evaluating the Explainability of Attributes and Prototypes for a Medical Classification Model. -- Revisiting FunnyBirds evaluation framework for prototypical parts networks. -- CoProNN: Concept-based Prototypical Nearest Neighbors for Explaining Vision Models. -- Unveiling the Anatomy of Adversarial Attacks: Concept-based XAI Dissection of CNNs. -- AutoCL: AutoML for Concept Learning. -- Locally Testing Model Detections for Semantic Global Concepts. -- Knowledge graphs for empirical concept retrieval. -- Global Concept Explanations for Graphs by Contrastive Learning. -- Generative explainable AI and verifiability. -- Augmenting XAI with LLMs: A Case Study in Banking Marketing Recommendation. -- Generative Inpainting for Shapley-Value-Based Anomaly Explanation. -- Challenges and Opportunities in Text Generation Explainability. -- NoNE Found: Explaining the Output of Sequence-to-Sequence Models when No Named Entity is Recognized. -- Notion, metrics, evaluation and benchmarking for XAI. -- Benchmarking Trust: A Metric for Trustworthy Machine Learning. -- Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI. -- Conditional Calibrated Explanations: Finding a Path between Bias and Uncertainty. -- Meta-evaluating stability measures: MAX-Sensitivity & AVG-Senstivity. -- Xpression: A unifying metric to evaluate Explainability and Compression of AI models. -- Evaluating Neighbor Explainability for Graph Neural Networks. -- A Fresh Look at Sanity Checks for Saliency Maps. -- Explainability, Quantified: Benchmarking XAI techniques. -- BEExAI: Benchmark to Evaluate Explainable AI. -- Associative Interpretability of Hidden Semantics with Contrastiveness Operators in Face Classification tasks.
This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024. The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on: Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI. Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI. Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI. Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.
ISBN: 9783031637872
Standard No.: 10.1007/978-3-031-63787-2doiSubjects--Topical Terms:
606815
Artificial intelligence
--Congresses.
LC Class. No.: Q334
Dewey Class. No.: 006.3
Explainable artificial intelligence = second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024 : proceedings.. Part I /
LDR
:04241nmm a2200349 a 4500
001
2373849
003
DE-He213
005
20240710130428.0
006
m d
007
cr nn 008maaau
008
241231s2024 sz s 0 eng d
020
$a
9783031637872
$q
(electronic bk.)
020
$a
9783031637865
$q
(paper)
024
7
$a
10.1007/978-3-031-63787-2
$2
doi
035
$a
978-3-031-63787-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q334
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
090
$a
Q334
$b
.W927 2024
111
2
$a
World Conference on Explainable Artificial Intelligence
$n
(2nd :
$d
2024 :
$c
Valletta, Malta)
$3
3722263
245
1 0
$a
Explainable artificial intelligence
$h
[electronic resource] :
$b
second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024 : proceedings.
$n
Part I /
$c
edited by Luca Longo, Sebastian Lapuschkin, Christin Seifert.
246
3
$a
xAI 2024
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2024.
300
$a
xvii, 494 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Communications in computer and information science,
$x
1865-0937 ;
$v
2153
505
0
$a
Intrinsically interpretable XAI and concept-based global explainability. -- Seeking Interpretability and Explainability in Binary Activated Neural Networks. -- Prototype-based Interpretable Breast Cancer Prediction Models: Analysis and Challenges. -- Evaluating the Explainability of Attributes and Prototypes for a Medical Classification Model. -- Revisiting FunnyBirds evaluation framework for prototypical parts networks. -- CoProNN: Concept-based Prototypical Nearest Neighbors for Explaining Vision Models. -- Unveiling the Anatomy of Adversarial Attacks: Concept-based XAI Dissection of CNNs. -- AutoCL: AutoML for Concept Learning. -- Locally Testing Model Detections for Semantic Global Concepts. -- Knowledge graphs for empirical concept retrieval. -- Global Concept Explanations for Graphs by Contrastive Learning. -- Generative explainable AI and verifiability. -- Augmenting XAI with LLMs: A Case Study in Banking Marketing Recommendation. -- Generative Inpainting for Shapley-Value-Based Anomaly Explanation. -- Challenges and Opportunities in Text Generation Explainability. -- NoNE Found: Explaining the Output of Sequence-to-Sequence Models when No Named Entity is Recognized. -- Notion, metrics, evaluation and benchmarking for XAI. -- Benchmarking Trust: A Metric for Trustworthy Machine Learning. -- Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI. -- Conditional Calibrated Explanations: Finding a Path between Bias and Uncertainty. -- Meta-evaluating stability measures: MAX-Sensitivity & AVG-Senstivity. -- Xpression: A unifying metric to evaluate Explainability and Compression of AI models. -- Evaluating Neighbor Explainability for Graph Neural Networks. -- A Fresh Look at Sanity Checks for Saliency Maps. -- Explainability, Quantified: Benchmarking XAI techniques. -- BEExAI: Benchmark to Evaluate Explainable AI. -- Associative Interpretability of Hidden Semantics with Contrastiveness Operators in Face Classification tasks.
520
$a
This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024. The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on: Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI. Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI. Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI. Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.
650
0
$a
Artificial intelligence
$v
Congresses.
$3
606815
650
1 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Natural Language Processing (NLP)
$3
3381674
650
2 4
$a
Computer and Information Systems Applications.
$3
3538505
650
2 4
$a
Computer Communication Networks.
$3
775497
700
1
$a
Longo, Luca.
$3
3385189
700
1
$a
Lapuschkin, Sebastian.
$3
3722264
700
1
$a
Seifert, Christin.
$3
3722265
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Communications in computer and information science ;
$v
2153.
$3
3722266
856
4 0
$u
https://doi.org/10.1007/978-3-031-63787-2
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9494298
電子資源
11.線上閱覽_V
電子書
EB Q334
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入