| Record Type: |
Electronic resources
: Monograph/item
|
| Title/Author: |
Fundamental mathematical concepts for machine learning in science/ by Umberto Michelucci. |
| Author: |
Michelucci, Umberto. |
| Published: |
Cham :Springer International Publishing : : 2024., |
| Description: |
xvii, 249 p. :ill., digital ;24 cm. |
| [NT 15003449]: |
1. Introduction -- 2. Calculus and Optimisation for Machine Learning -- 3. Linear Algebra -- 4. Statistics and Probability for Machine Learning -- 5. Sampling Theory (a.k.a. Creating a Dataset Properly) -- 6. Model Validation -- 7. Unbalanced Datasets -- 8. Hyperparameter Tuning -- 9. Model Agnostic Feature Importance. |
| Contained By: |
Springer Nature eBook |
| Subject: |
Machine learning - Mathematics. - |
| Online resource: |
https://doi.org/10.1007/978-3-031-56431-4 |
| ISBN: |
9783031564314 |