紀錄類型: |
書目-電子資源
: Monograph/item
|
正題名/作者: |
Smart big data in digital agriculture applications/ by Haoyu Niu, YangQuan Chen. |
其他題名: |
acquisition, advanced analytics, and plant physiology-informed artificial intelligence / |
作者: |
Niu, Haoyu. |
其他作者: |
Chen, YangQuan. |
出版者: |
Cham :Springer Nature Switzerland : : 2024., |
面頁冊數: |
xviii, 239 p. :ill., digital ;24 cm. |
內容註: |
Part I Why Big Data Is Not Smart Yet? -- 1. Introduction -- 2. Why Do Big Data and Machine Learning Entail the Fractional Dynamics? -- Part II Smart Big Data Acquisition Platforms -- 3. Small Unmanned Aerial Vehicles (UAVs) and Remote Sensing Payloads -- 4. The Edge-AI Sensors and Internet of Living Things (IoLT) -- 5. The Unmanned Ground Vehicles (UGVs) for Digital Agriculture -- Part III Advanced Big Data Analytics, Plant Physiology-informed Machine Learning, and Fractional-order Thinking -- 6. Fundamentals of Big Data, Machine Learning, and Computer VisionWorkflow -- 7. A Low-cost Proximate Sensing Method for Early Detection of Nematodes inWalnut Using Machine Learning Algorithms -- 8. Tree-level Evapotranspiration Estimation of Pomegranate Trees Using Lysimeter and UAV Multispectral Imagery -- 9. Individual Tree-level Water Status Inference Using High-resolution UAV Thermal Imagery and Complexity-informed Machine Learning -- 10. Scale-aware Pomegranate Yield Prediction Using UAV Imagery and Machine Learning -- Part IV Towards Smart Big Data in Digital Agriculture -- 11. Intelligent Bugs Mapping and Wiping (iBMW): An Affordable Robot-Driven Robot for Farmers -- 12. A Non-invasive Stem Water Potential Monitoring Method Using Proximate Sensor and Machine Learning Classification Algorithms -- 13. A Low-cost Soil Moisture Monitoring Method by Using Walabot and Machine Learning Algorithms -- 14. Conclusions and Future Research. |
Contained By: |
Springer Nature eBook |
標題: |
Artificial intelligence - Agricultural applications. - |
電子資源: |
https://doi.org/10.1007/978-3-031-52645-9 |
ISBN: |
9783031526459 |