語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Embedded machine learning for cyber-physical, IoT, and edge computing = use cases and emerging challenges /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Embedded machine learning for cyber-physical, IoT, and edge computing/ edited by Sudeep Pasricha, Muhammad Shafique.
其他題名:
use cases and emerging challenges /
其他作者:
Pasricha, Sudeep.
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
xv, 571 p. :ill. (chiefly col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Cooperating objects (Computer systems) -
電子資源:
https://doi.org/10.1007/978-3-031-40677-5
ISBN:
9783031406775
Embedded machine learning for cyber-physical, IoT, and edge computing = use cases and emerging challenges /
Embedded machine learning for cyber-physical, IoT, and edge computing
use cases and emerging challenges /[electronic resource] :edited by Sudeep Pasricha, Muhammad Shafique. - Cham :Springer Nature Switzerland :2024. - xv, 571 p. :ill. (chiefly col.), digital ;24 cm.
This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications to demonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
ISBN: 9783031406775
Standard No.: 10.1007/978-3-031-40677-5doiSubjects--Topical Terms:
2055414
Cooperating objects (Computer systems)
LC Class. No.: TK7895.E42
Dewey Class. No.: 006.22
Embedded machine learning for cyber-physical, IoT, and edge computing = use cases and emerging challenges /
LDR
:02087nmm a2200313 a 4500
001
2367892
003
DE-He213
005
20231006195642.0
006
m d
007
cr nn 008maaau
008
241127s2024 sz s 0 eng d
020
$a
9783031406775
$q
(electronic bk.)
020
$a
9783031406768
$q
(paper)
024
7
$a
10.1007/978-3-031-40677-5
$2
doi
035
$a
978-3-031-40677-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7895.E42
072
7
$a
UKM
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
072
7
$a
UKM
$2
thema
082
0 4
$a
006.22
$2
23
090
$a
TK7895.E42
$b
E53 2024
245
0 0
$a
Embedded machine learning for cyber-physical, IoT, and edge computing
$h
[electronic resource] :
$b
use cases and emerging challenges /
$c
edited by Sudeep Pasricha, Muhammad Shafique.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2024.
300
$a
xv, 571 p. :
$b
ill. (chiefly col.), digital ;
$c
24 cm.
520
$a
This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications to demonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
650
0
$a
Cooperating objects (Computer systems)
$3
2055414
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Embedded Systems.
$3
3592715
650
2 4
$a
Electronic Circuits and Systems.
$3
3538814
650
2 4
$a
Cyber-Physical Systems.
$3
3591993
700
1
$a
Pasricha, Sudeep.
$3
1000595
700
1
$a
Shafique, Muhammad.
$3
2191490
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-40677-5
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9488846
電子資源
11.線上閱覽_V
電子書
EB TK7895.E42
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入