語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Uncovering the Connectomic and Functional Components of Neurodegenerative Disease Spread Using Dynamic Network Modeling.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Uncovering the Connectomic and Functional Components of Neurodegenerative Disease Spread Using Dynamic Network Modeling./
作者:
Dadgar-Kiani, Ehsan.
面頁冊數:
1 online resource (56 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
Contained By:
Dissertations Abstracts International84-11B.
標題:
Brain. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30399003click for full text (PQDT)
ISBN:
9798379470616
Uncovering the Connectomic and Functional Components of Neurodegenerative Disease Spread Using Dynamic Network Modeling.
Dadgar-Kiani, Ehsan.
Uncovering the Connectomic and Functional Components of Neurodegenerative Disease Spread Using Dynamic Network Modeling.
- 1 online resource (56 pages)
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
Thesis (Ph.D.)--Stanford University, 2023.
Includes bibliographical references
An emerging view regarding neurodegenerative diseases is that discreet seeding of misfolded proteins leads to widespread pathology. However, the mechanisms by which misfolded proteins seed distinct brain regions and cause differential whole-brain pathology remain elusive. Using whole-brain tissue clearing and high-resolution imaging, I longitudinally mapped pathology in an α-synuclein preformed fibril injection model of Parkinson's disease. Cleared brains at different time points of disease progression were quantitatively segmented and registered to a standardized atlas, revealing distinct phases of spreading and decline. I then developed a computational network model with parameters that represent α-synuclein pathological spreading, aggregation, decay, and gene expression pattern to this longitudinal dataset. This model generalized to predicting α-synuclein spreading patterns from several distinct brain regions and could also estimate their origins. Altogether, these results empower a more mechanistic understanding and accurate prediction of neurodegenerative disease progression.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379470616Subjects--Topical Terms:
525115
Brain.
Index Terms--Genre/Form:
542853
Electronic books.
Uncovering the Connectomic and Functional Components of Neurodegenerative Disease Spread Using Dynamic Network Modeling.
LDR
:02419nmm a2200349K 4500
001
2362994
005
20231109104727.5
006
m o d
007
cr mn ---uuuuu
008
241011s2023 xx obm 000 0 eng d
020
$a
9798379470616
035
$a
(MiAaPQ)AAI30399003
035
$a
(MiAaPQ)STANFORDnm719hy6952
035
$a
AAI30399003
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Dadgar-Kiani, Ehsan.
$3
3703737
245
1 0
$a
Uncovering the Connectomic and Functional Components of Neurodegenerative Disease Spread Using Dynamic Network Modeling.
264
0
$c
2023
300
$a
1 online resource (56 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
500
$a
Advisor: Ding, Jun;Lin, Michael Z.;Lee, Jin Hyung.
502
$a
Thesis (Ph.D.)--Stanford University, 2023.
504
$a
Includes bibliographical references
520
$a
An emerging view regarding neurodegenerative diseases is that discreet seeding of misfolded proteins leads to widespread pathology. However, the mechanisms by which misfolded proteins seed distinct brain regions and cause differential whole-brain pathology remain elusive. Using whole-brain tissue clearing and high-resolution imaging, I longitudinally mapped pathology in an α-synuclein preformed fibril injection model of Parkinson's disease. Cleared brains at different time points of disease progression were quantitatively segmented and registered to a standardized atlas, revealing distinct phases of spreading and decline. I then developed a computational network model with parameters that represent α-synuclein pathological spreading, aggregation, decay, and gene expression pattern to this longitudinal dataset. This model generalized to predicting α-synuclein spreading patterns from several distinct brain regions and could also estimate their origins. Altogether, these results empower a more mechanistic understanding and accurate prediction of neurodegenerative disease progression.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Brain.
$3
525115
650
4
$a
Neurodegeneration.
$3
3685376
650
4
$a
Pathology.
$3
643180
650
4
$a
Parkinsons disease.
$3
3562685
650
4
$a
Aging.
$3
543123
650
4
$a
Neurosciences.
$3
588700
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0571
690
$a
0493
690
$a
0317
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Stanford University.
$3
754827
773
0
$t
Dissertations Abstracts International
$g
84-11B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30399003
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9485350
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入