語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Optoelectronic and Electrochemical Properties of Hybrid Transition Metal Dichalcogenide Heterostructures.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optoelectronic and Electrochemical Properties of Hybrid Transition Metal Dichalcogenide Heterostructures./
作者:
Ji, Jaehoon.
面頁冊數:
1 online resource (178 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-10, Section: B.
Contained By:
Dissertations Abstracts International84-10B.
標題:
Polymers. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30499181click for full text (PQDT)
ISBN:
9798379435431
Optoelectronic and Electrochemical Properties of Hybrid Transition Metal Dichalcogenide Heterostructures.
Ji, Jaehoon.
Optoelectronic and Electrochemical Properties of Hybrid Transition Metal Dichalcogenide Heterostructures.
- 1 online resource (178 pages)
Source: Dissertations Abstracts International, Volume: 84-10, Section: B.
Thesis (Ph.D.)--Purdue University, 2023.
Includes bibliographical references
Transition metal dichalcogenides (TMDs) have attracted significant attention in recent years with their immense potential to revolutionize optoelectronics and electrochemical energy applications. However, several challenges have prevented their practical use, including fabrication difficulties, incompatibility with conventional doping techniques, and unwanted environmental effects. This thesis aims to address the issues by introducing novel strategies for transforming TMDs into organic-integrated hybrid structures. Furthermore, this study focuses on gaining a fundamental understanding and a tunability of the unique physical properties of TMDs. Finally, to unlock their full potential, this thesis explores synergetic effects among the hybrid components for the development of advanced optoelectronics and energy devices.By combining atomically thin TMDs with uniform organic layers, we have developed various two-dimensional (2D) hybrid junctions, including TMD/organic, TMD/TMD/organic, and TMD/organic/TMD. The TMD/organic hybrids are designed for type-II energy band alignments at the heterointerface and exhibit significantly improved (photo)conductivity and uniform photoresponse compared to pristine TMDs. The optoelectronic characteristics vary as a function of the layer number of TMDs, one of the unique features of ultrathin materials. We also find that integrating organic layers can tailor the charge density and polarity of TMD flakes, thus enabling controllable doping without damaging the crystallinity.The hybrid approach not only modulates the properties of individual TMD layers but also offers an opportunity to study unique phenomena of 2D heterostructures such as interlayer excitons (XIs). XIs are spatially separated bound states of an electron and a hole in TMD/TMD heterolayers. We prepared various TMD/TMD/organic hybrid heterostructures with distinct energy band alignments and demonstrated a selective modulation of XI emission. The photoluminescence from the radiative recombination of XIs can be preserved, quenched, or modulated based on the band alignments. Furthermore, we fabricated organic-layer-inserted heterolayers (TMD/organic/TMD) and investigated the environmental effects on XIs. The organic layers tailor the dielectric screening within XIs and the dipolar interaction among XIs, thus regulating the energy states of XIs. In addition to the rich potential in optoelectronics, the hybrid strategies are advantageous to improve electrochemical energy storage. We constructed hybrid composites from core carbon nanotubes, intermediate metal-organic frameworks (MOFs), and outer TMD layers for supercapacitor electrodes. The 3D hierarchical composites aim to achieve synergetic effects from the components and offer high energy density while maintaining excellent power density and durability. Percolated nanotube networks are highly conductive, MOFs ensure a fast ion diffusivity, and TMD offers a large ion capacity. We engineered the TMD morphologies via topochemical synthesis and determined the optimal structure maximizing faradaic-reactive surface areas for improved ion accumulation and redox energy storage. We found that the hybrid composite of a flower-like TMD structure interwoven with carbon networks exhibits an unprecedentedly high energy density of over 80 Wh/kg, superior to conventional supercapacitors.In summary, this thesis presents powerful strategies for engineering atomically thin TMDs and critical insights on relevant physics which may not be accessible otherwise. Given the extensive library of organic molecules, the hybrid approach may provide a versatile platform to study 2D materials and open new opportunities. The findings could serve as the foundation for the development of novel optoelectronic and energy storage applications.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379435431Subjects--Topical Terms:
535398
Polymers.
Index Terms--Genre/Form:
542853
Electronic books.
Optoelectronic and Electrochemical Properties of Hybrid Transition Metal Dichalcogenide Heterostructures.
LDR
:05085nmm a2200349K 4500
001
2362752
005
20231102122816.5
006
m o d
007
cr mn ---uuuuu
008
241011s2023 xx obm 000 0 eng d
020
$a
9798379435431
035
$a
(MiAaPQ)AAI30499181
035
$a
(MiAaPQ)Purdue22666144
035
$a
AAI30499181
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Ji, Jaehoon.
$3
3703492
245
1 0
$a
Optoelectronic and Electrochemical Properties of Hybrid Transition Metal Dichalcogenide Heterostructures.
264
0
$c
2023
300
$a
1 online resource (178 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-10, Section: B.
500
$a
Advisor: Choi, Jong Hyun.
502
$a
Thesis (Ph.D.)--Purdue University, 2023.
504
$a
Includes bibliographical references
520
$a
Transition metal dichalcogenides (TMDs) have attracted significant attention in recent years with their immense potential to revolutionize optoelectronics and electrochemical energy applications. However, several challenges have prevented their practical use, including fabrication difficulties, incompatibility with conventional doping techniques, and unwanted environmental effects. This thesis aims to address the issues by introducing novel strategies for transforming TMDs into organic-integrated hybrid structures. Furthermore, this study focuses on gaining a fundamental understanding and a tunability of the unique physical properties of TMDs. Finally, to unlock their full potential, this thesis explores synergetic effects among the hybrid components for the development of advanced optoelectronics and energy devices.By combining atomically thin TMDs with uniform organic layers, we have developed various two-dimensional (2D) hybrid junctions, including TMD/organic, TMD/TMD/organic, and TMD/organic/TMD. The TMD/organic hybrids are designed for type-II energy band alignments at the heterointerface and exhibit significantly improved (photo)conductivity and uniform photoresponse compared to pristine TMDs. The optoelectronic characteristics vary as a function of the layer number of TMDs, one of the unique features of ultrathin materials. We also find that integrating organic layers can tailor the charge density and polarity of TMD flakes, thus enabling controllable doping without damaging the crystallinity.The hybrid approach not only modulates the properties of individual TMD layers but also offers an opportunity to study unique phenomena of 2D heterostructures such as interlayer excitons (XIs). XIs are spatially separated bound states of an electron and a hole in TMD/TMD heterolayers. We prepared various TMD/TMD/organic hybrid heterostructures with distinct energy band alignments and demonstrated a selective modulation of XI emission. The photoluminescence from the radiative recombination of XIs can be preserved, quenched, or modulated based on the band alignments. Furthermore, we fabricated organic-layer-inserted heterolayers (TMD/organic/TMD) and investigated the environmental effects on XIs. The organic layers tailor the dielectric screening within XIs and the dipolar interaction among XIs, thus regulating the energy states of XIs. In addition to the rich potential in optoelectronics, the hybrid strategies are advantageous to improve electrochemical energy storage. We constructed hybrid composites from core carbon nanotubes, intermediate metal-organic frameworks (MOFs), and outer TMD layers for supercapacitor electrodes. The 3D hierarchical composites aim to achieve synergetic effects from the components and offer high energy density while maintaining excellent power density and durability. Percolated nanotube networks are highly conductive, MOFs ensure a fast ion diffusivity, and TMD offers a large ion capacity. We engineered the TMD morphologies via topochemical synthesis and determined the optimal structure maximizing faradaic-reactive surface areas for improved ion accumulation and redox energy storage. We found that the hybrid composite of a flower-like TMD structure interwoven with carbon networks exhibits an unprecedentedly high energy density of over 80 Wh/kg, superior to conventional supercapacitors.In summary, this thesis presents powerful strategies for engineering atomically thin TMDs and critical insights on relevant physics which may not be accessible otherwise. Given the extensive library of organic molecules, the hybrid approach may provide a versatile platform to study 2D materials and open new opportunities. The findings could serve as the foundation for the development of novel optoelectronic and energy storage applications.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Polymers.
$3
535398
650
4
$a
Defects.
$3
3682384
650
4
$a
Electrodes.
$3
629151
650
4
$a
Power.
$3
518736
650
4
$a
Carbon.
$3
604057
650
4
$a
Molybdenum.
$3
3681682
650
4
$a
Energy storage.
$3
652130
650
4
$a
Optoelectronics.
$3
517932
650
4
$a
Graphene.
$3
1569149
650
4
$a
Condensed matter physics.
$3
3173567
650
4
$a
Materials science.
$3
543314
650
4
$a
Mechanical engineering.
$3
649730
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0794
690
$a
0548
690
$a
0611
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Purdue University.
$3
1017663
773
0
$t
Dissertations Abstracts International
$g
84-10B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30499181
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9485108
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入