語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Machine Learning Approach to Observability Analysis of High-Dimensional Nonlinear Dynamical Systems Using Koopman Operator Theory.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine Learning Approach to Observability Analysis of High-Dimensional Nonlinear Dynamical Systems Using Koopman Operator Theory./
作者:
Balakrishnan, Shara Rhagha Wardhan.
面頁冊數:
1 online resource (190 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
Contained By:
Dissertations Abstracts International84-11B.
標題:
Theoretical mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30312814click for full text (PQDT)
ISBN:
9798379498894
Machine Learning Approach to Observability Analysis of High-Dimensional Nonlinear Dynamical Systems Using Koopman Operator Theory.
Balakrishnan, Shara Rhagha Wardhan.
Machine Learning Approach to Observability Analysis of High-Dimensional Nonlinear Dynamical Systems Using Koopman Operator Theory.
- 1 online resource (190 pages)
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
Thesis (Ph.D.)--University of California, Santa Barbara, 2023.
Includes bibliographical references
Nonlinear systems can be decomposed into observable and unobservable subsystems in theory, but achieving this decomposition in a data-driven framework is challenging. Koopman operators enable us to embed nonlinear dynamical systems in high-dimensional function spaces. In this thesis, we explore how the observable decomposition of linear Koopman models relates to the observable decomposition of nonlinear systems and show how this decomposition can be achieved in a data-driven setting. In a model biological soil bacterium, Pseudomonas putida, we use a deep neural network approach to learn Koopman operator representations to model the gene expression-phenotype dynamics. Using the Koopman observable decomposition, we identified 18 out of 5564 genes in Pseudomonas putida, which impact the growth phenotype of the bacterium in R2A media. We use CRISPRi for multiplexed targeted gene regulation and show that 80% of the gene targets have the predicted impact on the fitness of the bacterium. Our results provide a novel machine learning tool to detect critical states that generate desired outcomes in complex, high-dimensional nonlinear dynamical systems.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379498894Subjects--Topical Terms:
3173530
Theoretical mathematics.
Subjects--Index Terms:
Genotypic activityIndex Terms--Genre/Form:
542853
Electronic books.
Machine Learning Approach to Observability Analysis of High-Dimensional Nonlinear Dynamical Systems Using Koopman Operator Theory.
LDR
:02657nmm a2200409K 4500
001
2360057
005
20230925052812.5
006
m o d
007
cr mn ---uuuuu
008
241011s2023 xx obm 000 0 eng d
020
$a
9798379498894
035
$a
(MiAaPQ)AAI30312814
035
$a
AAI30312814
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Balakrishnan, Shara Rhagha Wardhan.
$3
3700669
245
1 0
$a
Machine Learning Approach to Observability Analysis of High-Dimensional Nonlinear Dynamical Systems Using Koopman Operator Theory.
264
0
$c
2023
300
$a
1 online resource (190 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
500
$a
Advisor: Yeung, Enoch; Hespanha, Joao.
502
$a
Thesis (Ph.D.)--University of California, Santa Barbara, 2023.
504
$a
Includes bibliographical references
520
$a
Nonlinear systems can be decomposed into observable and unobservable subsystems in theory, but achieving this decomposition in a data-driven framework is challenging. Koopman operators enable us to embed nonlinear dynamical systems in high-dimensional function spaces. In this thesis, we explore how the observable decomposition of linear Koopman models relates to the observable decomposition of nonlinear systems and show how this decomposition can be achieved in a data-driven setting. In a model biological soil bacterium, Pseudomonas putida, we use a deep neural network approach to learn Koopman operator representations to model the gene expression-phenotype dynamics. Using the Koopman observable decomposition, we identified 18 out of 5564 genes in Pseudomonas putida, which impact the growth phenotype of the bacterium in R2A media. We use CRISPRi for multiplexed targeted gene regulation and show that 80% of the gene targets have the predicted impact on the fitness of the bacterium. Our results provide a novel machine learning tool to detect critical states that generate desired outcomes in complex, high-dimensional nonlinear dynamical systems.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Theoretical mathematics.
$3
3173530
650
4
$a
Bioengineering.
$3
657580
650
4
$a
Computer engineering.
$3
621879
650
4
$a
Electrical engineering.
$3
649834
653
$a
Genotypic activity
653
$a
Koopman operator theory
653
$a
Machine learning
653
$a
Nonlinear dynamical systems
653
$a
Observability
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0642
690
$a
0202
690
$a
0544
690
$a
0464
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
University of California, Santa Barbara.
$b
Electrical & Computer Engineering.
$3
1020566
773
0
$t
Dissertations Abstracts International
$g
84-11B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30312814
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9482413
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入