語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Resource Allocation in Next Generation Mobile Networks.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Resource Allocation in Next Generation Mobile Networks./
作者:
Gholami Ghavamabad, Anousheh.
面頁冊數:
1 online resource (168 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-04, Section: A.
Contained By:
Dissertations Abstracts International84-04A.
標題:
Electrical engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29326302click for full text (PQDT)
ISBN:
9798351469485
Resource Allocation in Next Generation Mobile Networks.
Gholami Ghavamabad, Anousheh.
Resource Allocation in Next Generation Mobile Networks.
- 1 online resource (168 pages)
Source: Dissertations Abstracts International, Volume: 84-04, Section: A.
Thesis (Ph.D.)--University of Maryland, College Park, 2022.
Includes bibliographical references
The increasing heterogeneity of the mobile network infrastructure together with the explosively growing demand for bandwidth-hungry services with diverse quality of service (QoS) requirements leads to a degradation in the performance of traditional networks. To address this issue in next-generation mobile networks (NGMN), various technologies such as software-defined networking (SDN), network function virtualization (NFV), mobile edge/cloud computing (MEC/MCC), non-terrestrial networks (NTN), and edge ML are essential. Towards this direction, an optimal allocation and management of heterogeneous network resources to achieve the required low latency, energy efficiency, high reliability, enhanced coverage and connectivity, etc. is a key challenge to be solved urgently. In this dissertation, we address four critical and challenging resource allocation problems in NGMN and propose efficient solutions to tackle them. In the first part, we address the network slice resource provisioning problem in NGMN for delivering a wide range of services promised by 5G systems and beyond, including enhanced mobile broadband (eMBB), ultra-reliable and low latency (URLLC), and massive machine-type communication (mMTC). Network slicing is one of the major solutions needed to meet the differentiated service requirements of NGMN, under one common network infrastructure. Towards robust mobile network slicing, we propose a novel approach for the end-to-end (E2E) resource allocation in a realistic scenario with uncertainty in slices' demands using stochastic programming. The effectiveness of our proposed methodology is validated through simulations.Despite the significant benefits that network slicing has demonstrated to bring to the management and performance of NGMN, the real-time response required by many emerging delay-sensitive applications, such as autonomous driving, remote health, and smart manufacturing, necessitates the integration of multi-access edge computing (MEC) into network sliding for 5G networks and beyond. To this end, we discuss a novel collaborative cloud-edge-local computation offloading scheme in the next two parts of this dissertation. The first part studies the problem from the perspective of the infrastructure provider and shows the effectiveness of the proposed approach in addressing the rising number of latency-sensitive services and improving energy efficiency which has become a primary concern in NGMN. Moreover, taking into account the perspective of application (higher layer), we propose a novel framework for the optimal reservation of resources by applications, resulting in significant resource savings and reduced cost. The proposed method utilizes application-specific resource coupling relationships modeled using linear regression analysis. We further improve this approach by using Reinforcement Learning to automatically derive resource coupling functions in dynamic environments. Enhanced connectivity and coverage are other key objectives of NGMN. In this regard, unmanned aerial vehicles (UAVs) have been extensively utilized to provide wireless connectivity in rural and under-developed areas, enhance network capacity, and provide support for peaks or unexpected surges in user demand. The popularity of UAVs in such scenarios is mainly owing to their fast deployment, cost-efficiency, and superior communication performance resulting from line-of-sight (LoS)-dominated wireless channels. In the fifth part of this dissertation, we formulate the problem of aerial platform resource allocation and traffic routing in multi-UAV relaying systems wherein UAVs are deployed as flying base stations. Our proposed solution is shown to improve the supported traffic with minimum deployment cost. Moreover, the new breed of intelligent devices and applications such as UAVs, AR/VR, remote health, autonomous vehicles, etc. requires a novel paradigm shift from traditional cloud-based learning to a distributed, low-latency, and reliable ML at the network edge. To this end, Federated Learning (FL) has been proposed as a new learning scheme that enables devices to collaboratively learn a shared model while keeping the training data locally. However, the performance of FL is significantly affected by various security threats such as data and model poisoning attacks. Towards reliable edge learning, in the last part of this dissertation, we propose trust as a metric to measure the trustworthiness of the FL agents and thereby enhance the reliability of FL.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798351469485Subjects--Topical Terms:
649834
Electrical engineering.
Subjects--Index Terms:
Resource allocationIndex Terms--Genre/Form:
542853
Electronic books.
Resource Allocation in Next Generation Mobile Networks.
LDR
:05836nmm a2200385K 4500
001
2359561
005
20230917195745.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798351469485
035
$a
(MiAaPQ)AAI29326302
035
$a
AAI29326302
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Gholami Ghavamabad, Anousheh.
$3
3700168
245
1 0
$a
Resource Allocation in Next Generation Mobile Networks.
264
0
$c
2022
300
$a
1 online resource (168 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-04, Section: A.
500
$a
Advisor: Baras, John S.
502
$a
Thesis (Ph.D.)--University of Maryland, College Park, 2022.
504
$a
Includes bibliographical references
520
$a
The increasing heterogeneity of the mobile network infrastructure together with the explosively growing demand for bandwidth-hungry services with diverse quality of service (QoS) requirements leads to a degradation in the performance of traditional networks. To address this issue in next-generation mobile networks (NGMN), various technologies such as software-defined networking (SDN), network function virtualization (NFV), mobile edge/cloud computing (MEC/MCC), non-terrestrial networks (NTN), and edge ML are essential. Towards this direction, an optimal allocation and management of heterogeneous network resources to achieve the required low latency, energy efficiency, high reliability, enhanced coverage and connectivity, etc. is a key challenge to be solved urgently. In this dissertation, we address four critical and challenging resource allocation problems in NGMN and propose efficient solutions to tackle them. In the first part, we address the network slice resource provisioning problem in NGMN for delivering a wide range of services promised by 5G systems and beyond, including enhanced mobile broadband (eMBB), ultra-reliable and low latency (URLLC), and massive machine-type communication (mMTC). Network slicing is one of the major solutions needed to meet the differentiated service requirements of NGMN, under one common network infrastructure. Towards robust mobile network slicing, we propose a novel approach for the end-to-end (E2E) resource allocation in a realistic scenario with uncertainty in slices' demands using stochastic programming. The effectiveness of our proposed methodology is validated through simulations.Despite the significant benefits that network slicing has demonstrated to bring to the management and performance of NGMN, the real-time response required by many emerging delay-sensitive applications, such as autonomous driving, remote health, and smart manufacturing, necessitates the integration of multi-access edge computing (MEC) into network sliding for 5G networks and beyond. To this end, we discuss a novel collaborative cloud-edge-local computation offloading scheme in the next two parts of this dissertation. The first part studies the problem from the perspective of the infrastructure provider and shows the effectiveness of the proposed approach in addressing the rising number of latency-sensitive services and improving energy efficiency which has become a primary concern in NGMN. Moreover, taking into account the perspective of application (higher layer), we propose a novel framework for the optimal reservation of resources by applications, resulting in significant resource savings and reduced cost. The proposed method utilizes application-specific resource coupling relationships modeled using linear regression analysis. We further improve this approach by using Reinforcement Learning to automatically derive resource coupling functions in dynamic environments. Enhanced connectivity and coverage are other key objectives of NGMN. In this regard, unmanned aerial vehicles (UAVs) have been extensively utilized to provide wireless connectivity in rural and under-developed areas, enhance network capacity, and provide support for peaks or unexpected surges in user demand. The popularity of UAVs in such scenarios is mainly owing to their fast deployment, cost-efficiency, and superior communication performance resulting from line-of-sight (LoS)-dominated wireless channels. In the fifth part of this dissertation, we formulate the problem of aerial platform resource allocation and traffic routing in multi-UAV relaying systems wherein UAVs are deployed as flying base stations. Our proposed solution is shown to improve the supported traffic with minimum deployment cost. Moreover, the new breed of intelligent devices and applications such as UAVs, AR/VR, remote health, autonomous vehicles, etc. requires a novel paradigm shift from traditional cloud-based learning to a distributed, low-latency, and reliable ML at the network edge. To this end, Federated Learning (FL) has been proposed as a new learning scheme that enables devices to collaboratively learn a shared model while keeping the training data locally. However, the performance of FL is significantly affected by various security threats such as data and model poisoning attacks. Towards reliable edge learning, in the last part of this dissertation, we propose trust as a metric to measure the trustworthiness of the FL agents and thereby enhance the reliability of FL.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Mass communications.
$3
3422380
650
4
$a
Computer engineering.
$3
621879
650
4
$a
Computer science.
$3
523869
653
$a
Resource allocation
653
$a
Next generation
653
$a
Mobile network
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0544
690
$a
0984
690
$a
0464
690
$a
0708
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
University of Maryland, College Park.
$b
Electrical Engineering.
$3
1018746
773
0
$t
Dissertations Abstracts International
$g
84-04A.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29326302
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9481917
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入