語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Multifaceted Engineering and Functionalization of Tough Adhesive Hydrogels and Devices.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Multifaceted Engineering and Functionalization of Tough Adhesive Hydrogels and Devices./
作者:
Ma, Zhenwei.
面頁冊數:
1 online resource (209 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-05, Section: B.
Contained By:
Dissertations Abstracts International84-05B.
標題:
Telemedicine. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30157857click for full text (PQDT)
ISBN:
9798352985014
Multifaceted Engineering and Functionalization of Tough Adhesive Hydrogels and Devices.
Ma, Zhenwei.
Multifaceted Engineering and Functionalization of Tough Adhesive Hydrogels and Devices.
- 1 online resource (209 pages)
Source: Dissertations Abstracts International, Volume: 84-05, Section: B.
Thesis (Ph.D.)--McGill University (Canada), 2022.
Includes bibliographical references
Hydrogel adhesion with both synthetic biomaterials and biological tissues has significant implications in biomedical device functionalization and regenerative medicine. Devices strongly bonded with tough yet soft tissue-mimetic hydrogels, when interfaced with tissues in human body, can remedy the damage and irritation caused by the mechanically mismatched stiff biomaterials. The robust integration of such hydrogels with damaged or degenerated tissues can further serve as a functional interface and therapeutic intervention strategy to potentially accelerate tissue healing and rehabilitation.However, it remains a major challenge to achieve tough wet adhesion between hydrogels and other materials. In clinical settings, even more hurdles need to be overcome considering the stringent regulations on the biocompatibility of the hydrogels/devices and the complex biomechanical environment they may encounter in vivo. To this end, this thesis focuses on the multifaceted design and engineering of tough adhesion between hydrogels, tissues, and biomedical devices, and explores the functionalization of the hybrid devices for advanced wound management.First, we propose a new paradigm to engineer tough bioadhesion of hydrogels with unprecedented controllability. Our strategy leverages low-frequency ultrasound (US) and various anchoring primer materials (nanoparticles, proteins and polymers) to form tough adhesion between hydrogels and tissues spatiotemporally without any chemical reactions. We discover that the highly localized and transient effects of US-induced cavitation enable spatial control of tough bioadhesion, validated by both experiments and finite element simulations. We further demonstrate the on-demand removal of bioadhesives using US and their applications for sustained transdermal drug delivery.Next, inspired by tendon endotenon sheath, we propose a versatile strategy to functionalize fiber-based devices such as sutures. This strategy seamlessly unites surgical sutures, tough gel sheath, and various functional materials. Robust modification is demonstrated with their strong interfacial adhesion. The surface stiffness, friction, and drag of the suture when contacted with tissues can be markedly reduced, without compromising the tensile strength. Versatile functionalization of the suture for infection prevention, wound monitoring, drug delivery, and near-infrared imaging is then presented.The last part of the thesis proposes a novel design of gel adhesive puncture-sealing (GAPS) suture device for tissue closure and sealing. Applied at its dry state, the GAPS suture device can rapidly swell and adhere to the surrounding tissues to seal the puncture hole. We study the constrained swelling of hydrogels and the achieved tissue adhesion energy with experimental analysis. We further highlight various advantages of the GAPS sutures for the repair of mechanically active meniscus tissues ex vivo, by preventing gap formation, stress concentration and local tissue damage owing to the achieved strong integration of tissue, hydrogel, and biomaterial.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798352985014Subjects--Topical Terms:
841772
Telemedicine.
Index Terms--Genre/Form:
542853
Electronic books.
Multifaceted Engineering and Functionalization of Tough Adhesive Hydrogels and Devices.
LDR
:08500nmm a2200445K 4500
001
2358921
005
20230830051520.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798352985014
035
$a
(MiAaPQ)AAI30157857
035
$a
(MiAaPQ)McGill_jm214v34t
035
$a
AAI30157857
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Ma, Zhenwei.
$3
3699469
245
1 0
$a
Multifaceted Engineering and Functionalization of Tough Adhesive Hydrogels and Devices.
264
0
$c
2022
300
$a
1 online resource (209 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-05, Section: B.
500
$a
Advisor: Li, Jianyu.
502
$a
Thesis (Ph.D.)--McGill University (Canada), 2022.
504
$a
Includes bibliographical references
520
$a
Hydrogel adhesion with both synthetic biomaterials and biological tissues has significant implications in biomedical device functionalization and regenerative medicine. Devices strongly bonded with tough yet soft tissue-mimetic hydrogels, when interfaced with tissues in human body, can remedy the damage and irritation caused by the mechanically mismatched stiff biomaterials. The robust integration of such hydrogels with damaged or degenerated tissues can further serve as a functional interface and therapeutic intervention strategy to potentially accelerate tissue healing and rehabilitation.However, it remains a major challenge to achieve tough wet adhesion between hydrogels and other materials. In clinical settings, even more hurdles need to be overcome considering the stringent regulations on the biocompatibility of the hydrogels/devices and the complex biomechanical environment they may encounter in vivo. To this end, this thesis focuses on the multifaceted design and engineering of tough adhesion between hydrogels, tissues, and biomedical devices, and explores the functionalization of the hybrid devices for advanced wound management.First, we propose a new paradigm to engineer tough bioadhesion of hydrogels with unprecedented controllability. Our strategy leverages low-frequency ultrasound (US) and various anchoring primer materials (nanoparticles, proteins and polymers) to form tough adhesion between hydrogels and tissues spatiotemporally without any chemical reactions. We discover that the highly localized and transient effects of US-induced cavitation enable spatial control of tough bioadhesion, validated by both experiments and finite element simulations. We further demonstrate the on-demand removal of bioadhesives using US and their applications for sustained transdermal drug delivery.Next, inspired by tendon endotenon sheath, we propose a versatile strategy to functionalize fiber-based devices such as sutures. This strategy seamlessly unites surgical sutures, tough gel sheath, and various functional materials. Robust modification is demonstrated with their strong interfacial adhesion. The surface stiffness, friction, and drag of the suture when contacted with tissues can be markedly reduced, without compromising the tensile strength. Versatile functionalization of the suture for infection prevention, wound monitoring, drug delivery, and near-infrared imaging is then presented.The last part of the thesis proposes a novel design of gel adhesive puncture-sealing (GAPS) suture device for tissue closure and sealing. Applied at its dry state, the GAPS suture device can rapidly swell and adhere to the surrounding tissues to seal the puncture hole. We study the constrained swelling of hydrogels and the achieved tissue adhesion energy with experimental analysis. We further highlight various advantages of the GAPS sutures for the repair of mechanically active meniscus tissues ex vivo, by preventing gap formation, stress concentration and local tissue damage owing to the achieved strong integration of tissue, hydrogel, and biomaterial.
520
$a
L'adherence d'hydrogels avec des biomateriaux synthetiques et des tissus biologiques a des implications importantes dans l'utilisation des dispositifs biomedicaux mais egalement en medecine regenerative. L'utilisation d'hydrogels mimant des tissus resistants et souples, lorsque mis en interaction avec les tissus du corps humain, peuvent remedier aux dommages et a l'irritation causee par les biomateriaux trop rigides et mecaniquement incompatibles. L'interaction robuste de ces hydrogels avec des tissus endommages ou degeneres peut en outre servir d'interface fonctionnelle et d'agent therapeutique pour potentiellement accelerer la guerison et la rehabilitation des tissus humais sous-jacent.Cependant, il persiste un defi majeur pour obtenir une adherence efficace, en milieu humide, entre les hydrogels et d'autres materiaux. En milieu clinique, encore plus d'obstacles doivent etre surmontes compte tenu des reglementations strictes sur la biocompatibilite des hydrogels, des dispositifs et de l'environnement biomecanique complexe que l'on rencontre in vivo. Dans le but de repondre a ce defi, cette these se concentre sur la conception et l'ingenierie des multiples facettes d'adherence robuste entre les hydrogels, les tissus et les dispositifs biomedicaux, et explore la fonctionnalite des dispositifs hybrides pour la gestion avancee des plaies.Tout d'abord, nous proposons un nouveau paradigme pour concevoir, avec un controle sans precedent, une bioadhesif d'hydrogel robuste. Notre strategie utilise des ultrasons (US) a basse frequence et divers materiaux d'amorce d'ancrage (nanoparticules, proteines et polymeres) pour former une adherence solide entre les hydrogels et les tissus de maniere spatio-temporelle sans aucune reaction chimique. Ceci permettant une adherence au niveau de l'interface pouvant atteindre plus de 1500 J/m2. Nous decouvrons que les effets hautement localises et transitoires de la cavite induite par les US permettent un controle aise de la bioadherence, ceci etant prouve a la fois par des experiences et a la fois par des simulations sur elements finis. De plus, nous demontrons l'elimination a la demande des bioadhesifs a l'aide des US et leurs applications en terme d'administration transdermique progressive de medicaments.Ensuite, nous proposons une strategie polyvalente inspires de l'endotenon pour ameliorer les dispositifs a base de fibres tels que les sutures. Cette strategie unit de facon harmonieuse des sutures chirurgicales, une gaine de gel resistante et divers materiaux fonctionnels. Une modification plus robuste est demontree au niveau de l'interface avec une amelioration majeure de l'adherence. La rigidite de surface, la friction et la trainee de la suture lorsqu'elle est en contact avec les tissus peuvent etre considerablement reduites, sans compromettre la resistance a la traction. Les fonctions polyvalentes de la suture en matiere de prevention des infections, de maintien des plaies, de liberation de medicaments ainsi que son imagerie dans le proche infrarouge sont ensuite presentees.La derniere partie de la these propose un nouveau concept de dispositif de suture GAPS (gel adhesif puncture-sealing) pour la fermeture et le colmatage des tissus. Applique a l'etat sec, le dispositif de suture GAPS peut rapidement s'expandre par la suite et adherer aux tissus environnants pour sceller et remplir le trou de ponction de l'anguille utilisee. Nous etudions donc le gonflement limite des hydrogels et l'energie d'adhesion tissulaire obtenue avec d'une part une analyse experimentale et d'autre part une modelisation analytique.Nous rapportons egalement divers avantages des sutures GAPS pour la reparation du tissus meniscal, possedant une biomecanique toute particuliere, en ex vivo. Les GAPS diminue la formation d'espaces au site lesionnel, mais aussi la concentration de stress et les dommages tissulaires locaux en raison de la forte interaction obtenue entre les tissus, l'hydrogel et les biomateriaux.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Telemedicine.
$3
841772
650
4
$a
Wound healing.
$3
825377
650
4
$a
Cancer therapies.
$3
3557730
650
4
$a
Chemistry.
$3
516420
650
4
$a
Adhesion.
$3
818212
650
4
$a
Biology.
$3
522710
650
4
$a
Biomedical materials.
$3
605745
650
4
$a
Adhesives.
$3
871837
650
4
$a
Sealing compounds.
$3
1618285
650
4
$a
Transdermal medication.
$3
915592
650
4
$a
Cavitation.
$3
838264
650
4
$a
Medical research.
$2
bicssc
$3
1556686
650
4
$a
Medical equipment.
$3
3560831
650
4
$a
Nanocrystals.
$3
605740
650
4
$a
Energy dissipation.
$3
619627
650
4
$a
Engineering.
$3
586835
650
4
$a
Bond strength.
$3
3561041
650
4
$a
Ultrasonic imaging.
$3
828386
650
4
$a
Biomechanics.
$3
548685
650
4
$a
Hydrogels.
$3
1305894
650
4
$a
Interfaces.
$2
gtt
$3
834756
650
4
$a
Biomedical engineering.
$3
535387
650
4
$a
Energy.
$3
876794
650
4
$a
Medical imaging.
$3
3172799
650
4
$a
Medicine.
$3
641104
650
4
$a
Oncology.
$3
751006
650
4
$a
Pharmaceutical sciences.
$3
3173021
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0306
690
$a
0648
690
$a
0485
690
$a
0537
690
$a
0541
690
$a
0791
690
$a
0574
690
$a
0564
690
$a
0992
690
$a
0572
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
McGill University (Canada).
$3
1018122
773
0
$t
Dissertations Abstracts International
$g
84-05B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30157857
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9481277
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入