語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Seiberg-Witten Floer K-Theory and Cyclic Group Actions.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Seiberg-Witten Floer K-Theory and Cyclic Group Actions./
作者:
Montague, Ian.
面頁冊數:
1 online resource (304 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
Contained By:
Dissertations Abstracts International84-11B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30423925click for full text (PQDT)
ISBN:
9798379558260
Seiberg-Witten Floer K-Theory and Cyclic Group Actions.
Montague, Ian.
Seiberg-Witten Floer K-Theory and Cyclic Group Actions.
- 1 online resource (304 pages)
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
Thesis (Ph.D.)--Brandeis University, 2023.
Includes bibliographical references
Given a spin rational homology sphere Y equipped with a Z/m-action preserving the spin structure, we use the Seiberg-Witten equations to define equivariant refinements of the invariant κ(Y) from [Man14], which take the form of a finite subset of elements in a lattice constructed from the representation ring of a twisted product of Pin(2) and Z/m. The main theorems consist of equivariant relative 10/8-ths type inequalities for spin equivariant cobordisms between rational homology spheres. We provide applications to knot concordance, give obstructions to extending cyclic group actions over spin fillings, and via taking branched covers we obtain genus bounds for knots in punctured 4-manifolds. In some cases, these bounds are strong enough to determine the relative genus for a large class of knots within certain homology classes in CP 2#CP 2, S 2xS 2#S 2xS 2, CP 2#S 2xS 2, and homotopy K3 surfaces.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379558260Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Rational homology sphereIndex Terms--Genre/Form:
542853
Electronic books.
Seiberg-Witten Floer K-Theory and Cyclic Group Actions.
LDR
:02213nmm a2200373K 4500
001
2357766
005
20230725053703.5
006
m o d
007
cr mn ---uuuuu
008
241011s2023 xx obm 000 0 eng d
020
$a
9798379558260
035
$a
(MiAaPQ)AAI30423925
035
$a
AAI30423925
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Montague, Ian.
$3
3698296
245
1 0
$a
Seiberg-Witten Floer K-Theory and Cyclic Group Actions.
264
0
$c
2023
300
$a
1 online resource (304 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
500
$a
Advisor: Ruberman, Daniel.
502
$a
Thesis (Ph.D.)--Brandeis University, 2023.
504
$a
Includes bibliographical references
520
$a
Given a spin rational homology sphere Y equipped with a Z/m-action preserving the spin structure, we use the Seiberg-Witten equations to define equivariant refinements of the invariant κ(Y) from [Man14], which take the form of a finite subset of elements in a lattice constructed from the representation ring of a twisted product of Pin(2) and Z/m. The main theorems consist of equivariant relative 10/8-ths type inequalities for spin equivariant cobordisms between rational homology spheres. We provide applications to knot concordance, give obstructions to extending cyclic group actions over spin fillings, and via taking branched covers we obtain genus bounds for knots in punctured 4-manifolds. In some cases, these bounds are strong enough to determine the relative genus for a large class of knots within certain homology classes in CP 2#CP 2, S 2xS 2#S 2xS 2, CP 2#S 2xS 2, and homotopy K3 surfaces.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical mathematics.
$3
3173530
653
$a
Rational homology sphere
653
$a
Spin structure
653
$a
Equivariant relative
653
$a
Spin fillings
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0405
690
$a
0642
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Brandeis University.
$b
Mathematics.
$3
1285724
773
0
$t
Dissertations Abstracts International
$g
84-11B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30423925
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9480122
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入