語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Some Geometric Inequalities by the ABP Method.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Some Geometric Inequalities by the ABP Method./
作者:
Pham, The Doanh.
面頁冊數:
1 online resource (68 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
Contained By:
Dissertations Abstracts International84-12B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30317310click for full text (PQDT)
ISBN:
9798379592561
Some Geometric Inequalities by the ABP Method.
Pham, The Doanh.
Some Geometric Inequalities by the ABP Method.
- 1 online resource (68 pages)
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
Thesis (Ph.D.)--Rutgers The State University of New Jersey, School of Graduate Studies, 2023.
Includes bibliographical references
In this thesis, we apply the so-called Alexandrov-Bakelman-Pucci (ABP) method to establish some geometric inequalities. We first prove a logarithmic Sobolev inequality for closed n-dimensional minimal submanifolds Σ of \uD835\uDD4An+m. As a consequence, it recovers the classical result that |\uD835\uDD4An| ≤ |Σ| for m = 1, 2. Next, we prove a Sobolev type inequality for positive symmetric two-tensors on smooth domains in ℝn which was established by D. Serre when the domain is convex. Furthermore, we formulate and prove an inequality related to quermassintegrals of closed hypersurfaces of the Euclidean space. In the last application of the ABP method, we give a proof of the Willmore-type inequality for k-curvatures of closed submanifolds in a manifold with nonnegative sectional curvature.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379592561Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Alexandrov-Bakelman-PucciIndex Terms--Genre/Form:
542853
Electronic books.
Some Geometric Inequalities by the ABP Method.
LDR
:02122nmm a2200361K 4500
001
2357751
005
20230725053700.5
006
m o d
007
cr mn ---uuuuu
008
241011s2023 xx obm 000 0 eng d
020
$a
9798379592561
035
$a
(MiAaPQ)AAI30317310
035
$a
AAI30317310
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Pham, The Doanh.
$3
3698281
245
1 0
$a
Some Geometric Inequalities by the ABP Method.
264
0
$c
2023
300
$a
1 online resource (68 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
500
$a
Advisor: Li, YanYan.
502
$a
Thesis (Ph.D.)--Rutgers The State University of New Jersey, School of Graduate Studies, 2023.
504
$a
Includes bibliographical references
520
$a
In this thesis, we apply the so-called Alexandrov-Bakelman-Pucci (ABP) method to establish some geometric inequalities. We first prove a logarithmic Sobolev inequality for closed n-dimensional minimal submanifolds Σ of \uD835\uDD4An+m. As a consequence, it recovers the classical result that |\uD835\uDD4An| ≤ |Σ| for m = 1, 2. Next, we prove a Sobolev type inequality for positive symmetric two-tensors on smooth domains in ℝn which was established by D. Serre when the domain is convex. Furthermore, we formulate and prove an inequality related to quermassintegrals of closed hypersurfaces of the Euclidean space. In the last application of the ABP method, we give a proof of the Willmore-type inequality for k-curvatures of closed submanifolds in a manifold with nonnegative sectional curvature.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical mathematics.
$3
3173530
653
$a
Alexandrov-Bakelman-Pucci
653
$a
Geometric inequalities
653
$a
Sobolev inequality
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0405
690
$a
0642
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Rutgers The State University of New Jersey, School of Graduate Studies.
$b
Mathematics.
$3
3698280
773
0
$t
Dissertations Abstracts International
$g
84-12B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30317310
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9480107
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入