語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Quantification and Application of Uncertainty in the Formation of Nanoparticles.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Quantification and Application of Uncertainty in the Formation of Nanoparticles./
作者:
Long, Danny.
面頁冊數:
1 online resource (151 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
Contained By:
Dissertations Abstracts International84-11B.
標題:
Applied mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30312068click for full text (PQDT)
ISBN:
9798379584924
Quantification and Application of Uncertainty in the Formation of Nanoparticles.
Long, Danny.
Quantification and Application of Uncertainty in the Formation of Nanoparticles.
- 1 online resource (151 pages)
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
Thesis (Ph.D.)--Colorado State University, 2023.
Includes bibliographical references
Nanoparticles are essential across many scientific applications, but their properties are size-dependent. Despite the usefulness of producing monodisperse particle size distributions, it still remains a challenge to fully understand -- and hence be able to control -- nanoparticle formation reactions due to limitations in what can be observed experimentally. This thesis transfers mathematical, statistical, and computational techniques to this area of nanoparticle chemistry to substantially bolster the sophistication of the quantitative analysis used to better understand nanoparticle systems. First, more efficient software is developed to simulate the reactions. Then, parameter estimation is performed in a robust manner through Bayesian inference, where I demonstrate the ability to parameterize nonlinear ordinary differential equations in such a way that I can fit the observed data and quantify the uncertainty in the parameter estimates. From Bayesian inference, I build three additional analysis frameworks. (1) Model selection through a Bayesian framework; (2) optimizing the yield of the nanoparticle-forming reactions while accounting for uncertainty; and (3) optimizing future measurements to collect data providing the most new information. The culmination of this thesis provides a quantitative framework to analyze arbitrary nanoparticle systems to complement and fill in the gaps of the current experimental techniques.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379584924Subjects--Topical Terms:
2122814
Applied mathematics.
Subjects--Index Terms:
Bayesian inversionIndex Terms--Genre/Form:
542853
Electronic books.
Quantification and Application of Uncertainty in the Formation of Nanoparticles.
LDR
:02877nmm a2200409K 4500
001
2356319
005
20230612072306.5
006
m o d
007
cr mn ---uuuuu
008
241011s2023 xx obm 000 0 eng d
020
$a
9798379584924
035
$a
(MiAaPQ)AAI30312068
035
$a
AAI30312068
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Long, Danny.
$3
3696801
245
1 0
$a
Quantification and Application of Uncertainty in the Formation of Nanoparticles.
264
0
$c
2023
300
$a
1 online resource (151 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-11, Section: B.
500
$a
Advisor: Bangerth, Wolfgang.
502
$a
Thesis (Ph.D.)--Colorado State University, 2023.
504
$a
Includes bibliographical references
520
$a
Nanoparticles are essential across many scientific applications, but their properties are size-dependent. Despite the usefulness of producing monodisperse particle size distributions, it still remains a challenge to fully understand -- and hence be able to control -- nanoparticle formation reactions due to limitations in what can be observed experimentally. This thesis transfers mathematical, statistical, and computational techniques to this area of nanoparticle chemistry to substantially bolster the sophistication of the quantitative analysis used to better understand nanoparticle systems. First, more efficient software is developed to simulate the reactions. Then, parameter estimation is performed in a robust manner through Bayesian inference, where I demonstrate the ability to parameterize nonlinear ordinary differential equations in such a way that I can fit the observed data and quantify the uncertainty in the parameter estimates. From Bayesian inference, I build three additional analysis frameworks. (1) Model selection through a Bayesian framework; (2) optimizing the yield of the nanoparticle-forming reactions while accounting for uncertainty; and (3) optimizing future measurements to collect data providing the most new information. The culmination of this thesis provides a quantitative framework to analyze arbitrary nanoparticle systems to complement and fill in the gaps of the current experimental techniques.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Applied mathematics.
$3
2122814
650
4
$a
Statistics.
$3
517247
650
4
$a
Nanoscience.
$3
587832
653
$a
Bayesian inversion
653
$a
Experimental design
653
$a
Nanoparticles
653
$a
Optimization
653
$a
Population balance modeling
653
$a
Uncertainty quantification
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0364
690
$a
0463
690
$a
0565
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Colorado State University.
$b
Mathematics.
$3
1683531
773
0
$t
Dissertations Abstracts International
$g
84-11B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30312068
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9478675
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入