語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Earth, Humans, and Metals : = Investigating the Role of Iron and Other Metals in the Atmospheric, Oceanic, and Energy Systems.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Earth, Humans, and Metals :/
其他題名:
Investigating the Role of Iron and Other Metals in the Atmospheric, Oceanic, and Energy Systems.
作者:
Rathod, Sagar D.
面頁冊數:
1 online resource (183 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-07, Section: B.
Contained By:
Dissertations Abstracts International84-07B.
標題:
Atmospheric sciences. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29991927click for full text (PQDT)
ISBN:
9798368426976
Earth, Humans, and Metals : = Investigating the Role of Iron and Other Metals in the Atmospheric, Oceanic, and Energy Systems.
Rathod, Sagar D.
Earth, Humans, and Metals :
Investigating the Role of Iron and Other Metals in the Atmospheric, Oceanic, and Energy Systems. - 1 online resource (183 pages)
Source: Dissertations Abstracts International, Volume: 84-07, Section: B.
Thesis (Ph.D.)--Colorado State University, 2022.
Includes bibliographical references
Metals such as iron and copper have been an integral component of the Earth system since its beginnings and have formed the basis for modern human civilization growth since the Bronze and Iron Ages. Human activities include metals at various levels, from burning coal in power plants and mining ores lead to emissions of particulate and gaseous metallic products into the atmosphere. While suspended in the air, metal oxides such as hematite and magnetite absorb solar radiation, thus warming the atmosphere. After falling into the oceans, metals such as iron and magnesium act as important nutrients for oceanic biota, and thus affect the marine nutrient and carbon cycles. Human activities have increased many-fold since the beginning of the Industrial Era, and as the world moves from fossil fuel to renewable energy to reduce carbon emissions, the demand for metals is also projected to increase many folds. Yet, the past, present, and future impacts of anthropogenic activities on the atmospheric and marine metal cycles, particularly iron, remain poorly understood.In Chapter 2, I estimate the atmospheric radiative and oceanic biological impacts of anthropogenic iron emissions over the Industrial Era. I perform simulations using a mineralogy-based inventory and an Earth System Model and estimate the 1850-to-2010 global mean direct radiative forcing by anthropogenic iron to be +0.02 to +0.10 W/m2. I estimate that the enhanced phytoplankton primary production due to anthropogenic soluble iron deposition over the last 150 years caused carbon dioxide (CO2) sequestration of 0.2-13 ppmv. This sequestered CO2 also led to an 'avoided' CO2 forcing of -0.002 to -0.16 W/m2. While globally small, these impacts can be higher in specific regions; the anthropogenic iron oxide direct radiative forcing is +0.5 W/m2 over areas such as East Asia and India with more coal combustion and metal smelting. Anthropogenic soluble iron sustains >10% of marine net primary productivity in the high-latitude North Pacific Ocean, a region vulnerable to thermal stratification due to climate change.In Chapter 3, I focus on evaluating anthropogenic total iron emissions using observations and models. Performing the model-observation comparison only at sites where the modeled anthropogenic contribution is the highest, I find that the current emission inventory underestimates anthropogenic total iron emissions from North America and Europe by a factor of 3-5. Further isolating anthropogenic sectoral emissions over North America using Positive Matrix Factorization, I find that smelting and coal combustion emissions are overestimated by a factor of 3-10 in the current emission inventory, whereas heavy fuel oil emissions from ships and industrial boilers are underestimated by a factor of 2-5. By comparing modeled concentrations of iron oxides with observations from Japan, I find that the current smelting and coal combustion emissions from East Asia are only slightly overestimated in the inventory, by a factor of 1.2-1.5.Finally, in Chapter 4, I explore the regionality and magnitude of PM2.5 emissions from metal mining and smelting to meet projected global renewable energy demand. I estimate future PM2.5 (particulate matter smaller than 2.5 μm diameter) emissions from mining and smelting to meet the metal demand of renewable energy technologies in two climate pathways to be 0.3-0.6 Tg/yr in the 2020-2050 period, which is projected to contribute 10-30% of total anthropogenic primary PM2.5 combustion emissions in many countries. The concentration of mineral reserves in a few regions means the impacts are also regionally concentrated. Rapid decarbonization could lead to a faster reduction of overall anthropogenic PM2.5 emissions but also could create more unevenness in the distributions of emissions relative to where demand occurs.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798368426976Subjects--Topical Terms:
3168354
Atmospheric sciences.
Subjects--Index Terms:
BiogeochemistryIndex Terms--Genre/Form:
542853
Electronic books.
Earth, Humans, and Metals : = Investigating the Role of Iron and Other Metals in the Atmospheric, Oceanic, and Energy Systems.
LDR
:05235nmm a2200385K 4500
001
2355237
005
20230512095532.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798368426976
035
$a
(MiAaPQ)AAI29991927
035
$a
AAI29991927
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Rathod, Sagar D.
$3
3695639
245
1 0
$a
Earth, Humans, and Metals :
$b
Investigating the Role of Iron and Other Metals in the Atmospheric, Oceanic, and Energy Systems.
264
0
$c
2022
300
$a
1 online resource (183 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-07, Section: B.
500
$a
Advisor: Pierce, Jeffrey R. ; Bond, Tami C.
502
$a
Thesis (Ph.D.)--Colorado State University, 2022.
504
$a
Includes bibliographical references
520
$a
Metals such as iron and copper have been an integral component of the Earth system since its beginnings and have formed the basis for modern human civilization growth since the Bronze and Iron Ages. Human activities include metals at various levels, from burning coal in power plants and mining ores lead to emissions of particulate and gaseous metallic products into the atmosphere. While suspended in the air, metal oxides such as hematite and magnetite absorb solar radiation, thus warming the atmosphere. After falling into the oceans, metals such as iron and magnesium act as important nutrients for oceanic biota, and thus affect the marine nutrient and carbon cycles. Human activities have increased many-fold since the beginning of the Industrial Era, and as the world moves from fossil fuel to renewable energy to reduce carbon emissions, the demand for metals is also projected to increase many folds. Yet, the past, present, and future impacts of anthropogenic activities on the atmospheric and marine metal cycles, particularly iron, remain poorly understood.In Chapter 2, I estimate the atmospheric radiative and oceanic biological impacts of anthropogenic iron emissions over the Industrial Era. I perform simulations using a mineralogy-based inventory and an Earth System Model and estimate the 1850-to-2010 global mean direct radiative forcing by anthropogenic iron to be +0.02 to +0.10 W/m2. I estimate that the enhanced phytoplankton primary production due to anthropogenic soluble iron deposition over the last 150 years caused carbon dioxide (CO2) sequestration of 0.2-13 ppmv. This sequestered CO2 also led to an 'avoided' CO2 forcing of -0.002 to -0.16 W/m2. While globally small, these impacts can be higher in specific regions; the anthropogenic iron oxide direct radiative forcing is +0.5 W/m2 over areas such as East Asia and India with more coal combustion and metal smelting. Anthropogenic soluble iron sustains >10% of marine net primary productivity in the high-latitude North Pacific Ocean, a region vulnerable to thermal stratification due to climate change.In Chapter 3, I focus on evaluating anthropogenic total iron emissions using observations and models. Performing the model-observation comparison only at sites where the modeled anthropogenic contribution is the highest, I find that the current emission inventory underestimates anthropogenic total iron emissions from North America and Europe by a factor of 3-5. Further isolating anthropogenic sectoral emissions over North America using Positive Matrix Factorization, I find that smelting and coal combustion emissions are overestimated by a factor of 3-10 in the current emission inventory, whereas heavy fuel oil emissions from ships and industrial boilers are underestimated by a factor of 2-5. By comparing modeled concentrations of iron oxides with observations from Japan, I find that the current smelting and coal combustion emissions from East Asia are only slightly overestimated in the inventory, by a factor of 1.2-1.5.Finally, in Chapter 4, I explore the regionality and magnitude of PM2.5 emissions from metal mining and smelting to meet projected global renewable energy demand. I estimate future PM2.5 (particulate matter smaller than 2.5 μm diameter) emissions from mining and smelting to meet the metal demand of renewable energy technologies in two climate pathways to be 0.3-0.6 Tg/yr in the 2020-2050 period, which is projected to contribute 10-30% of total anthropogenic primary PM2.5 combustion emissions in many countries. The concentration of mineral reserves in a few regions means the impacts are also regionally concentrated. Rapid decarbonization could lead to a faster reduction of overall anthropogenic PM2.5 emissions but also could create more unevenness in the distributions of emissions relative to where demand occurs.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Atmospheric sciences.
$3
3168354
653
$a
Biogeochemistry
653
$a
Iron
653
$a
Metals
653
$a
PM2.5
653
$a
Pollution
653
$a
Renewable
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0725
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Colorado State University.
$b
Atmospheric Science.
$3
1677446
773
0
$t
Dissertations Abstracts International
$g
84-07B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29991927
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9477593
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入