語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Energy Efficient and Secure Communication in UAV Networks.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Energy Efficient and Secure Communication in UAV Networks./
作者:
Maeng, Sung Joon.
面頁冊數:
1 online resource (178 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-06, Section: B.
Contained By:
Dissertations Abstracts International84-06B.
標題:
Receivers & amplifiers. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30167933click for full text (PQDT)
ISBN:
9798358409200
Energy Efficient and Secure Communication in UAV Networks.
Maeng, Sung Joon.
Energy Efficient and Secure Communication in UAV Networks.
- 1 online resource (178 pages)
Source: Dissertations Abstracts International, Volume: 84-06, Section: B.
Thesis (Ph.D.)--North Carolina State University, 2022.
Includes bibliographical references
Hybrid beamforming is key to achieving energy-efficient 5G wireless networks equipped with massive amount of antennas. Low-resolution data converters bring yet another degree of freedom to energy efficiency for the state-of-the-art 5G transceivers. In this work, we consider the design of hybrid precoders for massive multiple-input multiple-output (MIMO) channels in millimeter-wave (mmWave) spectrum along with one-bit digital-to-analog converters (DACs) and finite-quantized phase shifters. In particular, we propose an alternating-optimization-based precoder design which recursively computes the covariance of the quantization distortion, and updates the precoders accordingly. Numerical results verify that the achievable rate improves quickly through iterations that involve updates to the weight matrix, distortion covariance of the quantization, and the respective precoders.Due to dense deployments of Internet of things (IoT) networks, interference management becomes a critical challenge. With the proliferation of aerial IoT devices, such as unmanned aerial vehicles (UAVs), interference characteristics in 3D environments will be different than those in the existing terrestrial IoT networks. In this paper, we consider 3D topology IoT networks with a mixture of aerial and terrestrial links, with low-cost cross-dipole antennas at ground nodes and both omni-directional and cross-dipole antennas at aerial nodes. Considering a massive-access communication scenario, we first derive the statistics of the channel gain at IoT receivers in closed form while taking into account the radiation patterns of both ground and aerial nodes. These are then used to calculate the ergodic achievable rate as a function of the height of the aerial receiver and the cumulative interference. We propose a low-complexity interference mitigation scheme that utilizes 3D antenna radiation pattern with different dipole antenna settings. Our results show that using the proposed scheme, the ergodic achievable rate improves as the height of the aerial receivers increases. In addition, we also show that the ratio between the ground and aerial receivers that maximizes the peak rate increases with the height of the aerial IoT receiver.Supporting reliable and seamless wireless connectivity for unmanned aerial vehicles (UAVs) has recently become a critical requirement to enable various different use cases of UAVs. Due to their widespread deployment footprint, cellular networks can support beyond visual line of sight (BVLOS) communications for UAVs. In this paper, we consider cellular connected UAVs (C-UAVs) that are served by massive multiple-input-multiple-output (MIMO) links to extend coverage range, while also improving physical layer security and authentication. We consider Rician channel and propose a novel linear precoder design for transmitting data and artificial noise (AN). We derive the closed-form expression of the ergodic secrecy rate of C-UAVs for both conventional and proposed precoder designs. In addition, we obtain the optimal power splitting factor that divides the power between data and AN by asymptotic analysis. Then, we apply the proposed precoder design in the fingerprint embedding authentication framework, where the goal is to minimize the probability of detection of the authentication tag at an eavesdropper. In simulation results, we show the superiority of the proposed precoder in both secrecy rate and the authentication probability considering moderate and large number of antenna massive MIMO scenarios.Reliable wireless coverage in drone corridors is critical to enable a connected, safe, and secure airspace. To support beyond visual line of sight (BVLOS) operations of aerial vehicles in a drone corridor, cellular base stations (BSs) can serve as a convenient infrastructure as they are widely deployed to provide seamless wireless coverage. However, antennas in the existing cellular networks are down-tilted to optimally serve their ground users, which results in coverage holes at higher altitudes when they are used to serve drones. In this paper, we consider the use of additional uptilted antennas at each cellular BS and optimize the uptilt angle to maximize the wireless coverage probability across a given drone corridor. Through numerical results, we characterize the optimal value of the antenna uptilt angle for a given antenna pattern as well as the minimum/maximum altitudes of the drone corridor.Since millimeter wave (mmWave) and sub-terahertz bands are highly vulnerable to blockage and penetration loss effects, wireless coverage enhancement is one of the critical challenges in indoor mmWave deployments. In particular, when the line-of-sight (LoS) link is blocked, a strong non-LoS (NLoS) path can provide a stable link quality. One of the efficient ways to improve the NLoS link is the use of strategically placed passive reflectors. In this letter, we study the indoor coverage improvement by using a transparent passive reflector attached on a wall. We consider an indoor open-door scenario, where the LoS link is blocked by the walls for receivers inside the room, and the coverage can only be achieved via an NLoS link through a passive reflector. We analytically derive closed-form equations of the reflection visibility probability and the coverage probability. By simulation and analytical results, we show the coverage dependency on the location and size of the reflector.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798358409200Subjects--Topical Terms:
3559205
Receivers & amplifiers.
Index Terms--Genre/Form:
542853
Electronic books.
Energy Efficient and Secure Communication in UAV Networks.
LDR
:06711nmm a2200349K 4500
001
2355081
005
20230515064607.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798358409200
035
$a
(MiAaPQ)AAI30167933
035
$a
(MiAaPQ)NCState_Univ18402039939
035
$a
AAI30167933
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Maeng, Sung Joon.
$3
3695471
245
1 0
$a
Energy Efficient and Secure Communication in UAV Networks.
264
0
$c
2022
300
$a
1 online resource (178 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-06, Section: B.
500
$a
Advisor: Guvenc, Ismail ; Dai, Huaiyu.
502
$a
Thesis (Ph.D.)--North Carolina State University, 2022.
504
$a
Includes bibliographical references
520
$a
Hybrid beamforming is key to achieving energy-efficient 5G wireless networks equipped with massive amount of antennas. Low-resolution data converters bring yet another degree of freedom to energy efficiency for the state-of-the-art 5G transceivers. In this work, we consider the design of hybrid precoders for massive multiple-input multiple-output (MIMO) channels in millimeter-wave (mmWave) spectrum along with one-bit digital-to-analog converters (DACs) and finite-quantized phase shifters. In particular, we propose an alternating-optimization-based precoder design which recursively computes the covariance of the quantization distortion, and updates the precoders accordingly. Numerical results verify that the achievable rate improves quickly through iterations that involve updates to the weight matrix, distortion covariance of the quantization, and the respective precoders.Due to dense deployments of Internet of things (IoT) networks, interference management becomes a critical challenge. With the proliferation of aerial IoT devices, such as unmanned aerial vehicles (UAVs), interference characteristics in 3D environments will be different than those in the existing terrestrial IoT networks. In this paper, we consider 3D topology IoT networks with a mixture of aerial and terrestrial links, with low-cost cross-dipole antennas at ground nodes and both omni-directional and cross-dipole antennas at aerial nodes. Considering a massive-access communication scenario, we first derive the statistics of the channel gain at IoT receivers in closed form while taking into account the radiation patterns of both ground and aerial nodes. These are then used to calculate the ergodic achievable rate as a function of the height of the aerial receiver and the cumulative interference. We propose a low-complexity interference mitigation scheme that utilizes 3D antenna radiation pattern with different dipole antenna settings. Our results show that using the proposed scheme, the ergodic achievable rate improves as the height of the aerial receivers increases. In addition, we also show that the ratio between the ground and aerial receivers that maximizes the peak rate increases with the height of the aerial IoT receiver.Supporting reliable and seamless wireless connectivity for unmanned aerial vehicles (UAVs) has recently become a critical requirement to enable various different use cases of UAVs. Due to their widespread deployment footprint, cellular networks can support beyond visual line of sight (BVLOS) communications for UAVs. In this paper, we consider cellular connected UAVs (C-UAVs) that are served by massive multiple-input-multiple-output (MIMO) links to extend coverage range, while also improving physical layer security and authentication. We consider Rician channel and propose a novel linear precoder design for transmitting data and artificial noise (AN). We derive the closed-form expression of the ergodic secrecy rate of C-UAVs for both conventional and proposed precoder designs. In addition, we obtain the optimal power splitting factor that divides the power between data and AN by asymptotic analysis. Then, we apply the proposed precoder design in the fingerprint embedding authentication framework, where the goal is to minimize the probability of detection of the authentication tag at an eavesdropper. In simulation results, we show the superiority of the proposed precoder in both secrecy rate and the authentication probability considering moderate and large number of antenna massive MIMO scenarios.Reliable wireless coverage in drone corridors is critical to enable a connected, safe, and secure airspace. To support beyond visual line of sight (BVLOS) operations of aerial vehicles in a drone corridor, cellular base stations (BSs) can serve as a convenient infrastructure as they are widely deployed to provide seamless wireless coverage. However, antennas in the existing cellular networks are down-tilted to optimally serve their ground users, which results in coverage holes at higher altitudes when they are used to serve drones. In this paper, we consider the use of additional uptilted antennas at each cellular BS and optimize the uptilt angle to maximize the wireless coverage probability across a given drone corridor. Through numerical results, we characterize the optimal value of the antenna uptilt angle for a given antenna pattern as well as the minimum/maximum altitudes of the drone corridor.Since millimeter wave (mmWave) and sub-terahertz bands are highly vulnerable to blockage and penetration loss effects, wireless coverage enhancement is one of the critical challenges in indoor mmWave deployments. In particular, when the line-of-sight (LoS) link is blocked, a strong non-LoS (NLoS) path can provide a stable link quality. One of the efficient ways to improve the NLoS link is the use of strategically placed passive reflectors. In this letter, we study the indoor coverage improvement by using a transparent passive reflector attached on a wall. We consider an indoor open-door scenario, where the LoS link is blocked by the walls for receivers inside the room, and the coverage can only be achieved via an NLoS link through a passive reflector. We analytically derive closed-form equations of the reflection visibility probability and the coverage probability. By simulation and analytical results, we show the coverage dependency on the location and size of the reflector.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Receivers & amplifiers.
$3
3559205
650
4
$a
Radiation.
$3
673904
650
4
$a
Ground stations.
$3
3683603
650
4
$a
Sensors.
$3
3549539
650
4
$a
Antennas.
$3
3681648
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Engineering.
$3
586835
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0538
690
$a
0544
690
$a
0537
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
North Carolina State University.
$3
1018772
773
0
$t
Dissertations Abstracts International
$g
84-06B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30167933
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9477437
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入