語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Developing Novel Ion Exchange Membranes for Renewable Energy Devices.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Developing Novel Ion Exchange Membranes for Renewable Energy Devices./
作者:
Thompson, Matthew.
面頁冊數:
1 online resource (114 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-05, Section: B.
Contained By:
Dissertations Abstracts International84-05B.
標題:
Organic chemistry. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29253589click for full text (PQDT)
ISBN:
9798351468433
Developing Novel Ion Exchange Membranes for Renewable Energy Devices.
Thompson, Matthew.
Developing Novel Ion Exchange Membranes for Renewable Energy Devices.
- 1 online resource (114 pages)
Source: Dissertations Abstracts International, Volume: 84-05, Section: B.
Thesis (Ph.D.)--Southern Illinois University at Carbondale, 2022.
Includes bibliographical references
Renewable energy applications (i.e. fuel cells, flow batteries, electrolyzers) have been at the forefront of green energy and environmental research over the past couple of decades and the research associated with them has skyrocketed due to changes in funding and incentives. The extensive research over the years have resulted in higher efficiency and longer lasting devices for renewable energy applications, but there is still a major bottleneck that all these devices share; the ion-exchange membrane (IEM). The development of polymer ion-exchange membranes has been very beneficial for these devices as they allow for higher working temperatures and increase the longevity and efficiency of said devices. IEM research can be summed up into two major types of membranes; proton- and anion-exchanging. Of these materials, proton-exchanging membrane (PEM) are well established and studied due to how long they have been manufactured and the ease of manufacturing. There has been a variety of different PEMs developed and tested, but none have been commercialized as heavily or used as universally as Nafion® (developed by DuPont in the 1960s) although it still suffers from setbacks like its high cost, low working temperatures and its low tolerance for fuel impurities. On the other hand, anion-exchange membranes (AEM) have become popular in this field of study as they boast a non-acidic substitute as well as more efficient oxygen reduction reactions allowing for operation without the use of expensive catalysts. AEMs are first in line to replace commercial PEMs like Nafion®, the major bottleneck being their ionic conductivities. Pairing the structural characteristics of PEMs with the efficient and more cost effective AEMs we sought out to design and synthesize new IEMs to compete with current commercial membranes.By using ring opening metatheses polymerization (ROMP) we have designed and developed numerous hydrocarbon polynorbornene derivative membranes with the intention of incorporating amino-phosphine ion exchange groups (IEG) to compete with current IEMs in both efficiency and cost with the major application of fuel cells and flow batteries in mind. We also performed different modifications to the initial membranes such as crosslinking and alkyl chain addition to increase the mechanical strength and mitigate the degradation of the membranes. Using results gathered from developing polynorbornene IEMs, we pivoted to another multitude of membranes, this time focusing on the PEM capabilities of fluorinated polymers instead of their hydrocarbon alternatives for use in redox flow batteries with the main goal of decreasing electrolyte crossover, therefore increasing the longevity of the devices. Several new IEMs were designed as composite membranes of Nafion® and aromatic organic IEGs and synthesized to compete with the current commercial IEMs while testing the effect of different aromatic IEGs on the salt permeability and mechanical strength of the membrane. Synthesis of a stable IEM with good electrolyte crossover and conductivity properties was achieved by combining a grafted Nafion® backbone with 2-phenylbenzimidazole side chains containing a long hydrocarbon chain to facilitate hydrophobicity and increase mechanical strength. These composite membranes take advantage of the imidazole's highly stable chemical backbone and proton exchanging properties allowing it to withstand highly acidic and oxidative environments as well as relying on benzimidazoles tight packing to reduce electrolyte permeability throughout the membrane.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798351468433Subjects--Topical Terms:
523952
Organic chemistry.
Subjects--Index Terms:
Flow batteryIndex Terms--Genre/Form:
542853
Electronic books.
Developing Novel Ion Exchange Membranes for Renewable Energy Devices.
LDR
:04911nmm a2200385K 4500
001
2355020
005
20230515064547.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798351468433
035
$a
(MiAaPQ)AAI29253589
035
$a
AAI29253589
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Thompson, Matthew.
$3
3319047
245
1 0
$a
Developing Novel Ion Exchange Membranes for Renewable Energy Devices.
264
0
$c
2022
300
$a
1 online resource (114 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-05, Section: B.
500
$a
Advisor: Gao, Yong.
502
$a
Thesis (Ph.D.)--Southern Illinois University at Carbondale, 2022.
504
$a
Includes bibliographical references
520
$a
Renewable energy applications (i.e. fuel cells, flow batteries, electrolyzers) have been at the forefront of green energy and environmental research over the past couple of decades and the research associated with them has skyrocketed due to changes in funding and incentives. The extensive research over the years have resulted in higher efficiency and longer lasting devices for renewable energy applications, but there is still a major bottleneck that all these devices share; the ion-exchange membrane (IEM). The development of polymer ion-exchange membranes has been very beneficial for these devices as they allow for higher working temperatures and increase the longevity and efficiency of said devices. IEM research can be summed up into two major types of membranes; proton- and anion-exchanging. Of these materials, proton-exchanging membrane (PEM) are well established and studied due to how long they have been manufactured and the ease of manufacturing. There has been a variety of different PEMs developed and tested, but none have been commercialized as heavily or used as universally as Nafion® (developed by DuPont in the 1960s) although it still suffers from setbacks like its high cost, low working temperatures and its low tolerance for fuel impurities. On the other hand, anion-exchange membranes (AEM) have become popular in this field of study as they boast a non-acidic substitute as well as more efficient oxygen reduction reactions allowing for operation without the use of expensive catalysts. AEMs are first in line to replace commercial PEMs like Nafion®, the major bottleneck being their ionic conductivities. Pairing the structural characteristics of PEMs with the efficient and more cost effective AEMs we sought out to design and synthesize new IEMs to compete with current commercial membranes.By using ring opening metatheses polymerization (ROMP) we have designed and developed numerous hydrocarbon polynorbornene derivative membranes with the intention of incorporating amino-phosphine ion exchange groups (IEG) to compete with current IEMs in both efficiency and cost with the major application of fuel cells and flow batteries in mind. We also performed different modifications to the initial membranes such as crosslinking and alkyl chain addition to increase the mechanical strength and mitigate the degradation of the membranes. Using results gathered from developing polynorbornene IEMs, we pivoted to another multitude of membranes, this time focusing on the PEM capabilities of fluorinated polymers instead of their hydrocarbon alternatives for use in redox flow batteries with the main goal of decreasing electrolyte crossover, therefore increasing the longevity of the devices. Several new IEMs were designed as composite membranes of Nafion® and aromatic organic IEGs and synthesized to compete with the current commercial IEMs while testing the effect of different aromatic IEGs on the salt permeability and mechanical strength of the membrane. Synthesis of a stable IEM with good electrolyte crossover and conductivity properties was achieved by combining a grafted Nafion® backbone with 2-phenylbenzimidazole side chains containing a long hydrocarbon chain to facilitate hydrophobicity and increase mechanical strength. These composite membranes take advantage of the imidazole's highly stable chemical backbone and proton exchanging properties allowing it to withstand highly acidic and oxidative environments as well as relying on benzimidazoles tight packing to reduce electrolyte permeability throughout the membrane.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Organic chemistry.
$3
523952
650
4
$a
Polymer chemistry.
$3
3173488
653
$a
Flow battery
653
$a
Fuel cells
653
$a
Ionomer
653
$a
Renewable energy
653
$a
Synthesis
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0490
690
$a
0495
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Southern Illinois University at Carbondale.
$b
Chemistry.
$3
2102977
773
0
$t
Dissertations Abstracts International
$g
84-05B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29253589
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9477376
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入