語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Explaining the Unexplainable : = Medical Decision-Making, AI, and a Right To Explanation.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Explaining the Unexplainable :/
其他題名:
Medical Decision-Making, AI, and a Right To Explanation.
作者:
Lang, Michael Brian.
面頁冊數:
1 online resource (129 pages)
附註:
Source: Masters Abstracts International, Volume: 84-05.
Contained By:
Masters Abstracts International84-05.
標題:
Medical equipment. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30157848click for full text (PQDT)
ISBN:
9798352989593
Explaining the Unexplainable : = Medical Decision-Making, AI, and a Right To Explanation.
Lang, Michael Brian.
Explaining the Unexplainable :
Medical Decision-Making, AI, and a Right To Explanation. - 1 online resource (129 pages)
Source: Masters Abstracts International, Volume: 84-05.
Thesis (LL.M.)--McGill University (Canada), 2022.
Includes bibliographical references
Significant decisions in medicine are being increasingly delegated to machines. Automated machine learning models, many of which are thought to be at least as reliable and accurate as human decision-makers, are being used to make decisions about diagnosis, treatment, and care allocation. Though these systems will potentially enhance the quality of health outcomes and contribute to more efficient models of care delivery, they also pose an explanation challenge.Decisions made by machine learning models are often not accompanied by explanations: it is often technically impossible to know why a machine learning system reaches one decision rather than another. This raises difficult legal and ethical questions about responsibility, equality, and the fundamental principles of procedural law.This essay explores the degree to which unexplainable decision-making interferes with our conventional ways of understanding the practice and regulation of medicine. I suggest, using medical malpractice as a model, that the challenges posed by unexplainable machine learning may be profound. I describe how, in the face of unexplainable machine learning, several jurisdictions have enacted 'rights to explanation,' including Quebec and the European Union. But these emerging statutory rights are unlikely to respond adequately to the justice implications generated by unexplainable machine learning in medicine. In fact, rights to explanation will probably make things worse.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798352989593Subjects--Topical Terms:
3560831
Medical equipment.
Index Terms--Genre/Form:
542853
Electronic books.
Explaining the Unexplainable : = Medical Decision-Making, AI, and a Right To Explanation.
LDR
:04541nmm a2200385K 4500
001
2354816
005
20230501063928.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798352989593
035
$a
(MiAaPQ)AAI30157848
035
$a
(MiAaPQ)McGill_hm50tx76b
035
$a
AAI30157848
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Lang, Michael Brian.
$3
3695188
245
1 0
$a
Explaining the Unexplainable :
$b
Medical Decision-Making, AI, and a Right To Explanation.
264
0
$c
2022
300
$a
1 online resource (129 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 84-05.
500
$a
Advisor: Zawati, Ma'n Hilmi; Beaudry, Jonas-Sebastien.
502
$a
Thesis (LL.M.)--McGill University (Canada), 2022.
504
$a
Includes bibliographical references
520
$a
Significant decisions in medicine are being increasingly delegated to machines. Automated machine learning models, many of which are thought to be at least as reliable and accurate as human decision-makers, are being used to make decisions about diagnosis, treatment, and care allocation. Though these systems will potentially enhance the quality of health outcomes and contribute to more efficient models of care delivery, they also pose an explanation challenge.Decisions made by machine learning models are often not accompanied by explanations: it is often technically impossible to know why a machine learning system reaches one decision rather than another. This raises difficult legal and ethical questions about responsibility, equality, and the fundamental principles of procedural law.This essay explores the degree to which unexplainable decision-making interferes with our conventional ways of understanding the practice and regulation of medicine. I suggest, using medical malpractice as a model, that the challenges posed by unexplainable machine learning may be profound. I describe how, in the face of unexplainable machine learning, several jurisdictions have enacted 'rights to explanation,' including Quebec and the European Union. But these emerging statutory rights are unlikely to respond adequately to the justice implications generated by unexplainable machine learning in medicine. In fact, rights to explanation will probably make things worse.
520
$a
Les decisions importantes en medecine sont de plus en plus deleguees aux machines. Des modeles d'apprentissage machine automatises, dont beaucoup sont consideres comme au moins aussi fiables et precis que les decideurs humains, sont utilises pour prendre des decisions en matiere de diagnostic, de traitement et de repartition des soins. Bien que ces systemes soient susceptibles d'ameliorer la qualite des resultats en matiere de sante et de contribuer a des modeles plus efficaces de prestation de soins, ils posent egalement un probleme d'explication.Les decisions prises par les modeles d'apprentissage automatique ne sont souvent pas accompagnees d'explications: il est souvent techniquement impossible de savoir pourquoi un systeme d'apprentissage automatique parvient a une decision plutot qu'a une autre. Cela souleve des questions juridiques et ethiques difficiles sur la responsabilite, l'egalite et les principes fondamentaux du droit procedural.Cette these explore la mesure dans laquelle la prise de decision inexplicable interfere avec nos facons conventionnelles de comprendre la pratique et la reglementation de la medecine. Je suggere, en utilisant la faute medicale comme modele, que les defis poses par l'apprentissage automatique inexplicable sont susceptibles d'etre profonds. Je decris comment, face a l'apprentissage automatique inexplicable, plusieurs juridictions ont promulgue des 'droits a l'explication,' notamment le Quebec et l'Union europeenne. Mais il est peu probable que ces droits statutaires emergents repondent de maniere adequate aux implications de justice generees par l'apprentissage automatique inexplicable en medecine. En fait, les droits a l'explication sont susceptibles d'aggraver la situation.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Medical equipment.
$3
3560831
650
4
$a
Medical malpractice.
$3
3682980
650
4
$a
Decision making.
$3
517204
650
4
$a
Law.
$3
600858
650
4
$a
Medical ethics.
$3
526828
650
4
$a
Health care management.
$3
2122906
650
4
$a
Medicine.
$3
641104
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0800
690
$a
0398
690
$a
0497
690
$a
0769
690
$a
0564
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
McGill University (Canada).
$3
1018122
773
0
$t
Masters Abstracts International
$g
84-05.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30157848
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9477172
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入