語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Dynamic Structural Equation Modeling with Gaussian Processes.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Dynamic Structural Equation Modeling with Gaussian Processes./
作者:
Ziedzor, Reginald.
面頁冊數:
1 online resource (127 pages)
附註:
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
Contained By:
Dissertations Abstracts International83-12B.
標題:
Social sciences education. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29064764click for full text (PQDT)
ISBN:
9798819388464
Dynamic Structural Equation Modeling with Gaussian Processes.
Ziedzor, Reginald.
Dynamic Structural Equation Modeling with Gaussian Processes.
- 1 online resource (127 pages)
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
Thesis (Ph.D.)--Southern Illinois University at Carbondale, 2022.
Includes bibliographical references
The dynamic structural equation modeling (DSEM) framework incorporates hierarchical latent modeling (HLM), structural equation modeling (SEM), time series analysis (TSA), and time-varying effects modeling (TVEM) to model the dynamic relationship between latent and observed variables. To model the functional relationships between variables, a Gaussian process (GP), by definition of its covariance function(s), allows researchers to define Gaussian distributions over functions of input variables. Therefore, by incorporating GPs to model the presence of significant trend in either latent or observed variables, this dissertation explores the adequacy and performance of GPs in manipulated conditions of sample size using the flexible Bayesian analysis approach. The overall results of these Monte Carlo simulation studies showcase the ability of the multi-output GPs to properly explore the presence of trends. Also, in modeling intensive longitudinal data, GPs can be specified to properly account for trends, without generating significantly biased and imprecise estimates.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798819388464Subjects--Topical Terms:
2144735
Social sciences education.
Subjects--Index Terms:
Bayesian analysisIndex Terms--Genre/Form:
542853
Electronic books.
Dynamic Structural Equation Modeling with Gaussian Processes.
LDR
:02457nmm a2200385K 4500
001
2354697
005
20230501063856.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798819388464
035
$a
(MiAaPQ)AAI29064764
035
$a
AAI29064764
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Ziedzor, Reginald.
$3
3695057
245
1 0
$a
Dynamic Structural Equation Modeling with Gaussian Processes.
264
0
$c
2022
300
$a
1 online resource (127 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
500
$a
Advisor: Koran, Jennifer.
502
$a
Thesis (Ph.D.)--Southern Illinois University at Carbondale, 2022.
504
$a
Includes bibliographical references
520
$a
The dynamic structural equation modeling (DSEM) framework incorporates hierarchical latent modeling (HLM), structural equation modeling (SEM), time series analysis (TSA), and time-varying effects modeling (TVEM) to model the dynamic relationship between latent and observed variables. To model the functional relationships between variables, a Gaussian process (GP), by definition of its covariance function(s), allows researchers to define Gaussian distributions over functions of input variables. Therefore, by incorporating GPs to model the presence of significant trend in either latent or observed variables, this dissertation explores the adequacy and performance of GPs in manipulated conditions of sample size using the flexible Bayesian analysis approach. The overall results of these Monte Carlo simulation studies showcase the ability of the multi-output GPs to properly explore the presence of trends. Also, in modeling intensive longitudinal data, GPs can be specified to properly account for trends, without generating significantly biased and imprecise estimates.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Social sciences education.
$3
2144735
650
4
$a
Social studies education.
$3
3422293
650
4
$a
Educational psychology.
$3
517650
650
4
$a
Quantitative psychology.
$3
2144748
653
$a
Bayesian analysis
653
$a
Dynamic structural equation modeling
653
$a
Gaussian process
653
$a
Intensive longitudinal data
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0534
690
$a
0632
690
$a
0525
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Southern Illinois University at Carbondale.
$b
Quantitative Methods.
$3
3695058
773
0
$t
Dissertations Abstracts International
$g
83-12B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29064764
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9477053
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入