語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
DNA Nanostructures as a Printing Press for DNA-Polymer Hybrid Materials.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
DNA Nanostructures as a Printing Press for DNA-Polymer Hybrid Materials./
作者:
Laxton, Sean Vincent.
面頁冊數:
1 online resource (178 pages)
附註:
Source: Masters Abstracts International, Volume: 84-05.
Contained By:
Masters Abstracts International84-05.
標題:
Polymers. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30157784click for full text (PQDT)
ISBN:
9798352989364
DNA Nanostructures as a Printing Press for DNA-Polymer Hybrid Materials.
Laxton, Sean Vincent.
DNA Nanostructures as a Printing Press for DNA-Polymer Hybrid Materials.
- 1 online resource (178 pages)
Source: Masters Abstracts International, Volume: 84-05.
Thesis (M.Sc.)--McGill University (Canada), 2022.
Includes bibliographical references
Block copolymers have widespread use in areas such as luminescence, photovoltaics, electronics, optics, shape memory, self healing, stimuli-responsiveness, photonics, and drug delivery due to their predictable, ordered nanostructures. However, block copolymer materials are usually restricted to highly symmetric spherical, cylindrical, lamellar, and vesicular morphologies, resulting from the non-covalent interactions that direct their assembly. Recent interest, inspired by natural systems, has emerged to break the symmetry in polymer self-assembly to achieve materials with new and unusual functional properties. To break the symmetry of polymer assembly, patchy particles, Janus particles, multicompartment particles, and lithography have been employed. Although these methods of polymer assembly have improved the range of polymer architectures, they have limited control of the compartmentalization and orientation of the binding sites on the particle surface. In contrast, DNA nanotechnology harnesses Watson-Crick-Franklin base pairing to create highly specific and programmable assemblies at the nanoscale. Therefore, transferring a pattern of DNA strands from a DNA nanostructure onto polymer particles ("printing") combines the materials properties of polymers with the high structural control of DNA nanotechnology. In this thesis, advances to make new DNA polymer hybrid materials are employed-with an emphasis of printing DNA patterns on polymer particle surfaces. First, the use of DNA cubes as a 2D printing press, placing DNA strands with controlled sequence, valency, and patterns on the surface of block copolymer micelles and spherical nucleic acids will be investigated. Second, using sequence-defined polymers, a polymer particle that can be assembled inside a DNA cube with a 3D DNA pattern attached will be examined. Again, these printed strands have controlled DNA sequence, valency, and pattern on the surface. Furthermore, these 3D cube printed particles can have polymers attached, with click chemistry, to the surface to change particle properties. All these cube printing methods are modular; changing the polymer composition of the DNA printed particles can further give assemblies with given polymer types at a given position, further tuning the material properties. Lastly, spherical nucleic acids will be used as a nanoreactor to incorporate hydrophobic drug-polymer conjugates for controlled drug release. These materials will be useful for drug delivery and building blocks for asymmetric polymer patterning. Overall, these DNA-polymer materials can be used to make new hierarchical and functional materials through their programmable assembly.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798352989364Subjects--Topical Terms:
535398
Polymers.
Index Terms--Genre/Form:
542853
Electronic books.
DNA Nanostructures as a Printing Press for DNA-Polymer Hybrid Materials.
LDR
:07404nmm a2200385K 4500
001
2354352
005
20230403071226.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798352989364
035
$a
(MiAaPQ)AAI30157784
035
$a
(MiAaPQ)McGill_kk91fs099
035
$a
AAI30157784
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Laxton, Sean Vincent.
$3
3694703
245
1 0
$a
DNA Nanostructures as a Printing Press for DNA-Polymer Hybrid Materials.
264
0
$c
2022
300
$a
1 online resource (178 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 84-05.
500
$a
Advisor: Sleiman, Hanadi.
502
$a
Thesis (M.Sc.)--McGill University (Canada), 2022.
504
$a
Includes bibliographical references
520
$a
Block copolymers have widespread use in areas such as luminescence, photovoltaics, electronics, optics, shape memory, self healing, stimuli-responsiveness, photonics, and drug delivery due to their predictable, ordered nanostructures. However, block copolymer materials are usually restricted to highly symmetric spherical, cylindrical, lamellar, and vesicular morphologies, resulting from the non-covalent interactions that direct their assembly. Recent interest, inspired by natural systems, has emerged to break the symmetry in polymer self-assembly to achieve materials with new and unusual functional properties. To break the symmetry of polymer assembly, patchy particles, Janus particles, multicompartment particles, and lithography have been employed. Although these methods of polymer assembly have improved the range of polymer architectures, they have limited control of the compartmentalization and orientation of the binding sites on the particle surface. In contrast, DNA nanotechnology harnesses Watson-Crick-Franklin base pairing to create highly specific and programmable assemblies at the nanoscale. Therefore, transferring a pattern of DNA strands from a DNA nanostructure onto polymer particles ("printing") combines the materials properties of polymers with the high structural control of DNA nanotechnology. In this thesis, advances to make new DNA polymer hybrid materials are employed-with an emphasis of printing DNA patterns on polymer particle surfaces. First, the use of DNA cubes as a 2D printing press, placing DNA strands with controlled sequence, valency, and patterns on the surface of block copolymer micelles and spherical nucleic acids will be investigated. Second, using sequence-defined polymers, a polymer particle that can be assembled inside a DNA cube with a 3D DNA pattern attached will be examined. Again, these printed strands have controlled DNA sequence, valency, and pattern on the surface. Furthermore, these 3D cube printed particles can have polymers attached, with click chemistry, to the surface to change particle properties. All these cube printing methods are modular; changing the polymer composition of the DNA printed particles can further give assemblies with given polymer types at a given position, further tuning the material properties. Lastly, spherical nucleic acids will be used as a nanoreactor to incorporate hydrophobic drug-polymer conjugates for controlled drug release. These materials will be useful for drug delivery and building blocks for asymmetric polymer patterning. Overall, these DNA-polymer materials can be used to make new hierarchical and functional materials through their programmable assembly.
520
$a
En raison de leurs nanostructures previsibles et ordonnees, les copolymeres a blocs sont largement utilises dans une variete de domaines, notamment les suivants : luminescence, photovoltaique, electronique, optique, memoire de forme, autoguerison, reponse aux stimuli, photonique et vehicules d'administration de medicaments. Cependant, les materiaux de copolymeres a blocs se limitent generalement a des morphologies spheriques, cylindriques, lamellaires et vesiculaires hautement symetriques, ce qui donne lieu a des interactions non covalentes qui dirigent leur assemblage. Un interet recent, qui s'appuie sur les systemes naturels, est apparu pour rompre la symetrie dans l'auto-assemblage des polymeres afin d'obtenir des materiaux aux proprietes fonctionnelles nouvelles et inhabituelles. Pour rompre la symetrie de l'assemblage des polymeres, des particules a patchs, des particules Janus, des particules a compartiments multiples et la lithographie ont ete utilisees. Ces procedes d'assemblage de polymeres ont ameliore la gamme d'architectures de polymeres, neanmoins, ils presentent un controle limite de la compartimentation et de l'orientation des sites de liaison a la surface des particules. Or, la nanotechnologie de l'ADN exploite l'appariement de bases Watson-Crick-Franklin pour creer des assemblages hautement specifiques et programmables a l'echelle nanometrique. Par consequent, le transfert d'un schema de brins d'ADN provenant d'une nanostructure d'ADN sur des particules de polymere (« impression ») combine les proprietes materielles des polymeres avec le fort controle structurel de la nanotechnologie de l'ADN. Dans cette these, des avancees technologiques sont employees pour fabriquer de nouveaux materiaux hybrides a base de polymeres d'ADN en mettant l'accent sur l'impression de schemas d'ADN sur des surfaces de particules de polymere. Dans un premier temps, il s'agira d'explorer l'utilisation de cubes d'ADN comme presse d'impression 2D afin de placer des brins d'ADN avec une sequence, une valence et des schemas sous controle a la surface de micelles de copolymeres a blocs et d'acides nucleiques spheriques. Dans un deuxieme temps, il s'agira d'examiner, a l'aide de polymeres a sequence definie, une particule de polymere qui peut etre assemblee a l'interieur d'un cube d'ADN ayant un schema d'ADN 3D attache. Encore une fois, ces brins imprimes ont une sequence, une valence et un schema d'ADN sous controle, a la surface. De plus, ces particules imprimees en cube 3D peuvent avoir des polymeres attaches, avec une chimie clic, a la surface pour modifier les proprietes des particules. Tous ces procedes d'impression de cubes sont modulaires; la modification de la composition polymere des particules imprimees d'ADN peut produire des assemblages ayant des types de polymeres donnes a une position donnee, ce qui affine davantage les proprietes du materiau. Enfin, il s'agira d'utiliser des acides nucleiques spheriques comme nanoreacteur pour incorporer des conjugues medicament-polymere hydrophobes pour permettre une liberation controlee du medicament. Ces materiaux seront utiles pour l'administration de medicaments et pour les blocs de construction dans le cadre de la formation de schemas polymeres asymetriques. Dans l'ensemble, ces materiaux ADN-polymeres peuvent etre utilises pour fabriquer de nouveaux materiaux hierarchiques et fonctionnels au moyen de leur assemblage programmable.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Polymers.
$3
535398
650
4
$a
Deoxyribonucleic acid--DNA.
$3
3546879
650
4
$a
Phenols.
$3
915439
650
4
$a
Chromatography.
$3
1073639
650
4
$a
Ions.
$3
814923
650
4
$a
Nuclear magnetic resonance--NMR.
$3
3560258
650
4
$a
Printing machinery.
$3
3694704
650
4
$a
Polymerization.
$3
560492
650
4
$a
Chemistry.
$3
516420
650
4
$a
Genetics.
$3
530508
650
4
$a
Medical imaging.
$3
3172799
650
4
$a
Organic chemistry.
$3
523952
650
4
$a
Polymer chemistry.
$3
3173488
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0485
690
$a
0369
690
$a
0574
690
$a
0490
690
$a
0495
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
McGill University (Canada).
$3
1018122
773
0
$t
Masters Abstracts International
$g
84-05.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30157784
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9476708
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入